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Abstract—Cutting tools with ceramic inserts are often used in the
process of machining many types of superalloy, mainly due to their
high strength and thermal resistance. Nevertheless, during the cutting
process, the plastic flow wear generated in these inserts enhances and
propagates cracks due to high temperature and high mechanical
stress. This leads to a very variable failure of the cutting tool. This
article explores the relationship between the continuous wear that
ceramic SiAlON (solid solutions based on the Si3N4 structure)
inserts experience during a high-speed machining process and the
evolution of sparks created during the same process. These sparks
were analysed through pictures of the cutting process recorded using
an SLR camera. Features relating to the intensity and area of the
cutting sparks were extracted from the individual pictures using
image processing techniques. These features were then related to the
ceramic insert’s crater wear area.

Keywords—Ceramic cutting tools, high speed machining, image
processing, tool condition monitoring, tool wear.

I. INTRODUCTION

N a machining process where great productivity is required,

it is important to obtain a high chip removal rate. There are
a number of different parameters associated with the
machining process, such as feed, depth of cut and cutting
speed, which could be altered to obtain a high chip removal
rate. The most common choice for increasing removal rate is
to increase the cutting speed, given that increasing the other
two parameters could result in a wider chip cross-section, and
hence higher cutting forces [1]-[3]. However, when the cutting
speed is increased, this results in higher stresses and higher
temperatures in the cutting area, therefore demanding greater
strength and thermal resistance from the cutting tool.
Traditional cemented tungsten carbides have good
performance up to around 800 °C however, at higher
temperatures, their strength decreases dramatically. By
contrast, ceramic cutting tools show good performance up to
1200 °C [2]. These ceramic materials are known to produce
higher metal removal rates than carbide materials when
milling heat resistant super alloys, given that the operating
speeds of ceramics are 20 or 30 times faster than that of a
carbide material [4]. Therefore, when milling nickel based
superalloys, materials with high levels of hardness and high
temperature resistance, SIAION (solid solutions based on the
Si3N4 structure) ceramic cutting tools are widely used [3], [5].
However, the plastic flow wear, due to high temperature and
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high mechanical stress generated in these cutting tools,
enhances and propagates cracks, leading eventually to tool
failure.

Tool failure in SiAION ceramic cutting tools can be highly
variable, resulting in a very unpredictable tool life. For this
reason, it has become relevant to try and monitor the condition
of these ceramic tools during the milling process [6]. By
continuously measuring the actual wear that these cutting tools
develop, it would be possible to prevent either discarding of
the tools when they are still usable or, alternatively, over-
usage, which could in turn lead to failure and possible damage
to the work piece.

Vision sensors can permit, using Digital Image Processing,
the continuous and online extraction of information from areas
of interest, such as a cutting tool in a machining process [7].
Digital Image Processing refers to the processing of digital
images through a computer [8]. This processing is generally
done through software that can manipulate the structure of the
images and extract relevant information. The relative low cost
and high availability of vision sensor devices, such as CCD
cameras or SLR cameras, has enabled their use in different
aspects of condition monitoring. At present, most tool
monitoring vision systems rely on the processing of images of
the cutting inserts. In order to obtain these images, the
machining program has to be interrupted and the inserts
removed from the tool [9]-[12]. This can be a time-consuming
process.

Fig. 1 High speed milling process using ceramic cutting tools

The milling of nickel-based alloys with SiAION cutting
tools is generally performed without any coolant, making it a
dry machining process. This condition enables the formation
of large and very visible sparks emanating from the cutting
area as shown in Fig. 1. It is proposed in this work that a
relationship exists between the cutting tool wear and the
evolution of specific features of the cutting sparks. Using a
visual imaging system, it would be possible to monitor the
evolution of the cutting sparks through computer vision and
image processing techniques; then, this evolution could be
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later compared to actual tool wear. Whilst this is an initial
approach to the proposed spark-insert wear relationship, the
final objective of this research would be to create an online or
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Fig. 2 Camera set-up

II. SYSTEM CONFIGURATION

In Fig. 2, a schematic of the system configuration is shown.
A monitoring system was built using a regular SLR Canon
EOS 60D digital camera, set to record images of the cutting
area of the machining process. The milling machine used was
a Starrag ZT 1000 5 axis CNC with a Siemens Sinumerik
840D controller. During machining time, the camera would
capture many images at a constant rate, with special focus on
the sparks that this process produced. Later, these images were
extracted and processed using the software MATLAB'.

A.Machining

As mentioned previously, the study was performed using a
five axis high speed milling machine, and the test used the
machining parameters shown in Table I. The cutting tools
used were SIAION ceramic inserts RNGN120400E 6060 from
Sandvik Coromant, in a holder of four inserts. Finally, the
work piece was a Waspaloy ring and the general standardized
composition of this material is shown by Table II.

TABLEI
MACHINING CUTTING PARAMETERS
PARAMETER VALUE
Cutting Speed V¢ (m/min) 875
Feed per minute (mm/min) 1843
Spindle speed n (rev) 4761
Cutting Depth ap (mm) 1.5
Tool Specific Diameter Dc (mm) 50.3
Radial Immersion ae (mm) 29.25
Feed per tooth fz (mm) 0.097
Number of inserts zc 4

B. Image Acquisition

In contrast to the human eye or a video feed, still pictures
are a single samples of a short period of time. In an SLR

' MATLAB and Image Processing Toolbox Release 2015b, The
MathWorks, Inc., Natick, Massachusetts, United States.

camera, the shutter speed parameter is the one that controls the
sample size in a single image. Therefore, the selection of
speed parameters can be a common dilemma that is mainly
dependent on the application. Through a separate piece of
research by the authors of this article in [13], it has been
concluded that for the present application, slow imaging
settings tend to give better results when processing images
from cutting sparks. This is mainly due to the fact that slow
imaging settings tend to expand the sample size in still
pictures in the time domain. This effect enables the acquisition
of a larger amount of spark behaviour data, averaged inside a
single image; as opposed to fast settings, that give more
instantaneous sets of data, that tend to increase noise when
extracting features of spark evolution. The values shown in
Table III represent the best combination of parameters when
using the slowest shutter speed value, given the environmental
illumination conditions. When the shutter speed is the main
variable, the values of the diaphragm and ISO can be derived
from the said speed. This is the case for the present
application, where neither the depth of focus mandated by the
Diaphragm, nor the camera sensitivity mandated by the ISO
value, are deemed as important as the shutter speed.

III. AREA AND INTENSITY PROCESSING

As mentioned previously, the images obtained during the
machining process were later extracted and processed.
Through a qualitative assessment of the most observable spark
features that evolve during the machining process, spark area
and spark intensity were selected to be extracted. Other visible
features were also assessed, such as spark angle and change in
colour, but both of these features would tend to peak or
change very early in the first minute of the machining process,
and stayed constant for the rest of the sequence.

The processing of the spark area and intensity was done
through the generalised algorithm found in Fig. 3. For each
feature however, there were different steps and approaches
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inside each of the four algorithm stages.

TABLE II
WASPALOY GENERAL COMPOSITION
ELEMENT MIN MAX

Carbon 0.02 0.10
Manganese - 0.50
Silicon -- 0.75
Chromium 18.0 21.0
Nickel Balance
Boron 0.003  0.008
Iron - 2.00
Cobalt 12.0 15.0

Titanium 2.60 3.25
Aluminium 1.00 1.50
Molybdenum  3.50 5.00
Zirconium 0.02 0.12

Copper - 0.10
Sulphur -- 0.02
TABLEIII
SLOW CAMERA PARAMETERS
PARAMETER  VALUE

Shutter Speed 1/5s
Diaphragm F22
ISO 5000

Image Capture

Pre-Processing

Image Processing

Feature Extraction

Fig. 3 General algorithm structure for spark area and intensity

A. Area Extraction

In the Pre-Processing stage, the first image of the compound
was loaded into the algorithm as a reference image, having
almost no spark visible but information about the background
layout. This reference image’s contrast was then enhanced
using a colour adjustment that was used later for the rest of the
images and that will be explained later. Then, this reference
image was converted into grey scale for further processing.

At the final step of this stage, the rest of the images were
loaded into the algorithm. The levels of intensity inside the
spark (Fig. 4 (a)) at the red and green channels were very high,
while the blue levels where quite low, compared to the rest of
the image. A colour adjustment was then applied to the
images, as it was done to the reference image. This colour
adjustment consisted in taking the values inside a low and
high limit for each colour channel of the images, and map
these values into the whole intensity range of 0 to 255. Fig. 4
(b) shows the result of the colour adjustment applied to all the
images, where only high levels of red, green and blue values
were taken and re-mapped. Finally, each image was converted
into grey scale individually, as illustrated in Fig. 4 (c).

(©)

Fig. 4 Spark area pre-processing (a) original image, (b) enhanced
image, and (c) grey scale image

At the Image Processing stage, the reference image was
subtracted from each image, in order to eliminate background
information. The resulting image was then converted into
binary, where the selection of the binary conversion threshold
can be seen in Fig. 5 (b). The value of 0.04 appears to
comprise most of the spark core area, without taking much
noise from the image as it is the case of lower thresholds, or
losing the spark shape, as it can be seen with higher threshold
values.

0.24 0.28 0.32
- -

(b)

Fig. 5 Binary conversion (a) original image, and (b) binary
conversion threshold selection
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After this, it was possible to identify the different connected
components of the image and discriminate each component by
size, as shown in Fig. 6. At this point, it became possible to
quantify the areas of these connected components by the
amount of pixels each one contained.

Fig. 6 Connected component discrimination

Given that all the previous steps of the processing algorithm
were mainly oriented to the isolation of the spark in each
image, it can be concluded that the largest connected
component of each image corresponded to the actual spark.
Therefore, the final stage of Feature Extraction simply
consisted in the extraction of the maximum area.

B. Intensity Extraction

For the extraction of intensity, the initial stage of Image
Production has the exact same structure as in the area
extraction. Nevertheless, in order to successfully isolate and
enhance the spark intensity, a filtering step would be required
further ahead in the algorithm. An analysis of different filters
and parameters was conducted, and it was concluded that a
Low-Pass filter was the most adequate in successfully
isolating the spark intensity from the background; therefore, it
was important at this point to create a Low-Pass filter mask.

At the Image Processing stage, again the subtraction of the
reference image R to each image Iy was carried out for
background elimination (1). The resulting image was then
filtered in the frequency domain by the Low-Pass mask H
previously created, as shown in Fig. 7 (b). The size of this
mask was derived from the values in the frequency spectrum,
shown in polar form in Fig. 7 (a). The frequency spectrum has
a zero frequency value at the center, with frequencies
increasing radially; therefore, the mask needed to pass only
values of this central area of low frequency, while cutting off
high frequencies.

Intensity(k) = max{zxy[(l" - R)QF (M)} €))

With the aid of this filter, the intensity of the spark
governed the total intensity of the image as shown in Fig. 7
(c). This made possible to perform a simple summation of the
entire image matrix into a single value, as expressed
previously in (1), in order to represent the spark intensity of
each image at the Feature Extraction stage.

(©)

Fig. 7 Image Processing (a) image in frequency domain, (b) low-pass
filter mask, and (c) filtered image

IV. RESULTS

A. Insert Wear Assessment

In order to extract the wear values of the actual ceramic
tools, it was necessary to stop the machining process and
extract a ceramic insert for inspection. During these breaks in
the machining, images of the insert’s rake face were recorded.
Image processing could also be employed to extract direct
wear data from the inserted tools by extracting the area of the
inserts worn rake face, also known as crater wear. With a
similar procedure as the spark area extraction, the worn
surface of the insert could be identified and isolated for the
extraction of an area value, as shown in Fig. 8.

(a) (b)

Fig. 8 Ceramic insert's crater wear area extraction with image
processing (a) original image, and (b) processed worn area

Fig. 9 shows the increase in the insert’s crater wear area
throughout the machining time with nine values of wear,
counting the initial state where no wear is visible. Also, the
area values are given in mm’, as the size of each pixel was
previously calculated. However, the wear trend in Fig. 9
corresponds to a machining process with multiple
interruptions for the assessment of the inserts. It may be
argued that a different crater wear area trend could have
occurred without these interruptions, and that this could have
presented lower levels of tool wear. This is due to the ever-
present limitation in ceramic materials of brittle fragility
where, in general, the continuous impact in milling operations
tends to lead to chipping and tool failure [14].

1434



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950
Vol:10, No:8, 2016

Fig.

L
=
k=
Q
=
>
=
@
c
Q
i}
£

L L L L L L L

40 60 80 100 120 140 160 180
Time (s)

9 Insert’s crater wear area values

B. Spark Feature Assessment

The spark area and intensity evolution graphs can be seen in
Fig. 10, where (a) shows how the total intensity of the spark
increases continuously with the machining time, while (b)
shows similar behaviour in the spark area evolution. Some
specific changes in both features coincide, such as the sudden
increase in spark intensity at the time of 60 seconds, as well as
the general expected gradual increasing trend, showing that
both descriptors are representative of the spark development.

When both descriptors are graphed along with the wear
measurements obtained previously (Fig. 10), a similar and
consistent general behaviour can be observed in all three
measures. This is also shown in Fig. 11. It is possible to see
that all three have a general qualitative correlation, as the
steepness of the three are very similar; however, it was not
possible to quantify this correlation as there is a dimensional
mismatch between the number of values of the sparks
descriptors and the values of insert wear.

05
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Fig. 10 Spark evolution (a) intensity, and (b) area
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Fig. 11 Spark area, intensity and insert's crater wear area

V.DISCUSSION

While there was some partial discussion with some of the
results presented previously, there are other important aspects
that shall be outlined. Firstly, algorithms appear to be
functioning as intended. There was as expected, a general
gradual increase of area and intensity with machining time.
For the purpose of tool wear extraction, it becomes apparent in
the authors view, that these two features are indeed the most

relevant. However, there is still further scope for optimisation
of the feature extraction algorithms presented. Also, the
general similarity between the spark area, intensity and insert
wear shows that there is an evident intrinsic correlation
between these, making possible the idea of exploring further
tool monitoring systems using this phenomenon. Yet, a more
in-depth analysis would be appropriate to understand better
the wear mechanisms of the ceramic SiAION inserts.
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Nevertheless, there were several limitations within this initial
investigation that could be addressed in future work.

The imaging system, for instance, was quite basic, using an
SLR camera with very wide gaps of data between samples,
given that the images had a five seconds gap. In this regard, it
would be important to find a way to assess which would be the
optimal imaging acquiring system, as well as the optimal
imaging parameters. As it was mentioned previously in this
work, a set of quite “slow” settings were used. It would be
interesting; however, to make sure that faster settings are
indeed not appropriate for this application. Furthermore, it
could be argued that a video feed may be more adequate for
further processing rather than still images, as this could
provide more information.

The wear assessment technique presented in this work of
measuring crater wear area through image processing could be
regarded as a basic method of obtaining wear data from the
ceramic tools. A more in-depth analysis of other wear
mechanisms in SiAION inserts should be carried out, where
perhaps a richer source of wear measurement could be found.
Other techniques such as the extraction of weight
measurements to find volumetric changes of the cutting tool
could show improved results. Or even yet, some measurement
of flank wear or notch wear could provide a better tool wear
trend [14], [15]. Alternatively, more sophisticated technology,
such as 3D imaging through scanners or simple stereo-vision
could be beneficial as an in-situ assessing technique.
Nevertheless, there would continue to be significantly less
wear data than spark data, due to the requirement of stopping
machining operation.

There is also future work regarding further analysis of this
possible tool monitoring system or technique, as there are
many variables associated with this type of metal cutting
processes. Machining parameters, such as feed, speed and
depth of cut are just a few of the process variables that could
give very different results in the way the cutting spark evolves.
Also, regarding the image acquisition side of the monitoring
system, alternative values for the previously mentioned
imaging settings or even external factors like illumination,
reflections and camera location, could greatly alter this spark-
wear relation.

Even though other techniques of tool wear assessment
through visual sensing, such as the ones mentioned at the
beginning of this article, appear to give a more precise
quantification of tool wear, their limitation of process
interruption is inevitable. Yet, the present tool monitoring
technique, also through visual sensing, has shown
considerable promise for the live assessment of tool wear.
Therefore, a fully functional system using this technology
could be a highly productive and low costed instrument for
high speed machining processes in the manufacturing industry
in the near future.

VI. CONCLUSIONS

In the machining of nickel-based superalloys, ceramic
inserted tools such as SiAlONs are used for their great
efficiency regarding high machining speeds. However, these

tools can present very unpredictable tool life spans, making a
tool monitoring technique or system important for further
increase machining efficiency. A relation between the dry
cutting process sparks and the actual cutting tool wear was
explored and can be summarised through the following
conclusions:

* Image processing algorithms for the extraction of cutting
spark Intensity and Area can be successfully applied to
still images from the machining process.

* These two parameters are good representatives of the
cutting spark evolution throughout machining time.

*  When the two image processing parameters are compared
to the actual cutting tool crater wear area, a qualitative
correlation and similarity is evident.

*  Further analysis and work is required to explore this
relationship further, along with all the different variables
that could alter it.

ACKNOWLEDGMENT

The main author would like to thank the Mexican
Government Foundation CONACyT for the financial support
for this research.

REFERENCES

[1] Z. Liu, X. Ai, H. Zhang, Z. Wang, and Y. Wan, “Wear patterns and
mechanisms of cutting tools in high-speed face milling,” in The 10th
International Manufacturing Conf. in China, Journal of Materials
Processing Technology, vol. 129, Fujian, China, 2002, pp. 222-226.

[2] S. Casto, E. Valvo, V. Ruisi, E. Lucchini, and S. Maschio, “Wear
mechanism of ceramic tools,” in Wear, vol. 160, 1993, pp. 227-235.

[3] A. Altin, M. Nalbant, and A. Taskesen, “The effects of cutting speed on
tool wear and tool life when machining Inconel 718 with ceramic tools,”
in Materials & Design, vol. 28, 2007, pp. 2518-2522.

[4] Sandvik Coromant, “Ceramics,” AB Sandvik Coromant, 2010,
Available:
http://www.sandvik.coromant.com/sitecollectiondocuments/downloads/g
lobal/brochures/en-gb/c-2929-61.pdf.

[5] X. Tian, J. Zhao, J. Zhao, Z. Gong, and Y. Dong, “Effect of cutting
speed on cutting forces and wear mechanisms in high-speed face milling
of Inconel 718 with Sialon ceramic tools,” in The International Journal
of Advanced Manufacturing Technology, vol. 69, London: Springer,
2013, pp. 2669-2678.

[6] G. Byme, D. Dornfeld, I. Inasaki, G. Ketteler, W. Konig, and R. Teti,
“Tool Condition Monitoring (TCM) — The Status of Research and
Industrial Application,” in CIRP Annals - Manufacturing Technology,
vol. 44, 1995, pp. 541-567.

[71 S. Kurada and C. Bradley, “A machine vision system for tool wear
assessment,” in Tribology International, vol. 30, 1997, pp. 295-304.

[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing:
International Edition, 3rd ed. New Jersey: Pearson Prentice Hall, 2010,
pp. 23.

[97 D.M. D’Addona and R. Teti, “Image Data Processing via Neural
Networks for Tool Wear Prediction,” in 8th CIRP Conf. on Electro
Physical and Chemical Machining (ISEM XVIII), vol. 12, 2013, pp.
252-257.

[10] S. Kurada and C. Bradley, “A review of machine vision sensors for tool
condition monitoring,” in Computers in Industry, vol. 34, 1997, pp. 55-
72.

[11] T. Pfeifer and L. Wiegers, “Reliable tool wear monitoring by optimized
image and illumination control in machine vision,” in Measurement, vol.
28,2000, pp. 209-218.

[12] T. Teshima, T. Shibasaka, M. Takuma, A. Yamamoto, and K. Iwata
“Estimation of Cutting Tool Life by Processing Tool Image Data with
Neural Network,” in CIRP Annals - Manufacturing Technology, vol. 42,
1993, pp. 59-62.

1437



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:10, No:8, 2016

[13] J. A. Dominguez Caballero, G. A. Manson, and M. B. Marshall,
“Optimal image processing acquisition parameters for a tool condition
monitoring system of ceramic inserted tools,” unpublished.

[14] JP. Davim, Machining of Hard Materials, New York: Springer Science
& Business Media, 2011, pp. 38.

[15] W. Grzesik, Advanced Machining Processes of Metallic Materials:
Theory, Modelling and Applications, Elsevier, 2008, pp. 163-166.

1438



