
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:10, No:7, 2016

904

 

 

 
Abstract—Punching shear failure is usually the governing failure 

mode of flat plate structures. Punching failure is brittle in nature 
which induces more vulnerability to this type of structure. In the 
present study, a 3D finite element model of a flat plate with low 
reinforcement ratio and without any transverse reinforcement has 
been developed. Punching shear stress and the deflection data were 
obtained on the surface of the flat plate as well as through the 
thickness of the model from numerical simulations. The obtained data 
were compared with the experimental results. Variation of punching 
stress with respect to deflection as obtained from numerical results is 
found to be in good agreement with the experimental results; the 
range of variation of punching stress is within 5%. The numerical 
simulation shows an early and gradual onset of nonlinearity, whereas 
the same is late and abrupt as observed in the experimental results. 
The range of variation of punching stress for different slab 
thicknesses between experimental and numerical results is less than 
15%. The developed numerical model is useful to complement 
available punching test series performed in the past. The results 
obtained from the numerical model will be helpful for designing 
retrofitting schemes of flat plates. 

 
Keywords—Flat plate, finite element model, punching shear, 

reinforcement ratio.  

I. INTRODUCTION 

HE greatest disadvantage of flat plate systems is the risk 
of brittle punching failure at the slab-column connection 

due to transfer of shear and unbalanced moment. Vertical 
loads acting on the floor system and moments transferred from 
the columns may create excessive shear stresses around the 
slab-column connection. Unbalanced moments naturally occur 
at corner and edge slab-column connections. They may also 
occur at interior connections with unequal vertical loads on 
adjacent spans, or at any connection due to combined vertical 
and lateral forces as a result of wind effects or earthquake 
excitations. 

In 1960, Kinnunen and Nylander [1] defined in their model 
the punching strength as a function of the slab deformation. 
This approach was later adopted by other researchers and 
further developed. Similar to the model of Kinnunen and 
Nylander [1], Muttoni [2] developed the Critical Shear Crack 
Theory (CSCT), which served as a basis for the fib Model 
Code 2010 and describes the punching strength as a function 
of the slab rotation whereby the slab response can be 
calculated with a Quadrilinear moment curvature relationship 
approach. However, it has to be noted that most of the models 
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using such an approach are based on the theory of an 
axisymmetric slab. Nevertheless, most punching tests were 
performed with specimens that were not axisymmetric and 
thus the validation of the model cannot directly be performed. 
In these cases several adjustments have to be made such as the 
consideration of an orthogonal flexural reinforcement layout, 
the shape of the column and the shape of the slab specimen. 

Lips and Muttoni [3] examined influence of punching shear 
reinforcement on theflexural response of flat slabs. They 
performed an investigation on the flexural response of 6 full-
scale flat slab specimens with the aim to investigate the 
punching strength and the rotation capacity of flat slabs with 
and without shear reinforcement. Fernández and Muttoni [4] 
performed analysis on applications of Critical Shear Crack 
Theory to punching of reinforced concrete slabs with 
transverse reinforcement. Mirzaei and Sasani [5]-[7] 
performed extensive experimental and analytical study on 
post-punching behavior of reinforced concrete slabs.  

Fariborz [8] proposed a formula to calculate the punching 
shear strength of flat plates with good accuracy for a wide 
range of slab thicknesses, tensile reinforcement ratios, and 
concrete compressive strengths. In this method, it is assumed 
that punching shear failure occurs due to the crushing of the 
critical concrete strut adjacent to the column. A large number 
of experimental results of slab test specimen, reported in the 
literature were gathered to evaluate the accuracy of the 
proposed formula, as well as the punching shear formulae in 
some of the internationally recognized standards such as AS 
3600-2009 [9], ACI 318-05 [10], CSA A23.3-04 [11], DIN 
1045-1:2001 [12], Eurocode2 [13], and NZS 3101:2006 [14]. 

Punching shear is usually the governing failure mode for 
flat slabs supported on columns, with or without capitals. This 
subject has been thoroughly investigated in the past by various 
researchers dealing with the theoretical and/or experimental 
aspects of the phenomenon. Current ACI design code 
provisions for checking punching shear follow a format 
similar to that of ACI 318-08 [15], which relates the punching 
shear strength to the effective flexural depth of the slab d and 
the control perimeter b0 of a critical section (at a distance d/2 
from the face of the column for ACI 318-08 [15]). Guandalini 
et al. [16] conducted experimental study on the punching 
behavior of flat plate with low reinforcement ratio. There is a 
lack of study on the effects of clear cover, reinforcement ratio, 
column reinforcement, thickness of the slab, column size, 
reinforcement size, integrity reinforcement, material property, 
and nonlinearity on punching shear behavior. A 3D finite 
element (FE) model has been developed in the present study to 
explore effects of the parameters mentioned above. The model 
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