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Comparative Performance of Artificial Bee Colony
Based Algorithms for Wind-Thermal Unit
Commitment
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Abstract—This paper presents the three optimization models,
namely New Binary Artificial Bee Colony (NBABC) algorithm,
NBABC with Local Search (NBABC-LS), and NBABC with Genetic
Crossover (NBABC-GC) for solving the Wind-Thermal Unit
Commitment (WTUC) problem. The uncertain nature of the wind
power is incorporated using the Weibull probability density function,
which is used to calculate the overestimation and underestimation
costs associated with the wind power fluctuation. The NBABC
algorithm utilizes a mechanism based on the dissimilarity measure
between binary strings for generating the binary solutions in WTUC
problem. In NBABC algorithm, an intelligent scout bee phase is
proposed that replaces the abandoned solution with the global best
solution. The local search operator exploits the neighboring region of
the current solutions, whereas the integration of genetic crossover
with the NBABC algorithm increases the diversity in the search space
and thus avoids the problem of local trappings encountered with the
NBABC algorithm. These models are then used to decide the units
on/off status, whereas the lambda iteration method is used to dispatch
the hourly load demand among the committed units. The
effectiveness of the proposed models is validated on an IEEE 10-unit
thermal system combined with a wind farm over the planning period
of 24 hours.

Keywords—Artificial bee colony algorithm, economic dispatch,
unit commitment, wind power.

[. INTRODUCTION

HE rise of environmental protection and the progressive

exhaustion of traditional fossil energy sources have
increased the interest in integrating renewable energy sources
into the existing power systems. The wind power is one of the
most important renewable energy resource that has gained
widespread attention. One of the major benefits of wind
energy is that, after the initial land and capital costs, there is
essentially no cost involved in the power production of wind
energy conversion system. In addition, the impacts of wind
energy resources are environmentally friendlier than the
impacts of thermal energy resources. However, the uncertainty
and unpredictability of wind power would affect the stable and
secure power system operation [1]. Due to this reason, an
efficient algorithm is essential to determine the optimal
proportion of wind generating capacity that can be integrated

P. K. Singhal and V. Sharma are with the Department of Electrical
Engineering, National Institute of Technology Hamirpur, H.P 177005 India
(e-mail: singhalkprateek@gmail.com; veenanaresh@gmail.com).

R. Naresh is with the Department of Electrical Engineering, National
Institute of Technology Hamirpur, H.P 177005 India (Corresponding author,
phone: +91-1972-254526; e-mail: rnareshnith@gmail.com).

with the thermal system for operating an isolated hybrid power
system reliably and efficiently.

A wide variety of methods has been proposed by the
researchers in the literature to solve the conventional unit
commitment problem. However, the less contribution has been
done in developing the algorithms to solve the unit
commitment problem for wind-thermal coordination. The
solution methods are broadly classified into two categories,
namely classical and heuristic methods. The frequently used
classical methods for solving WTUC problem are mixed-
integer linear programming [2], dynamic programming [3] and
priority list [4], [S]. But, these methods are associated with the
problems of large computational time requirement, inability to
handle time dependent constraints for nonlinear and non-
convex large scale unit commitment problems. These
problems have motivated the researchers to develop the
heuristic methods for solving the complex unit commitment
problems even for the large size systems in a reasonable
execution time. The mostly used meta-heuristic methods are
simulated annealing [6], particle swarm optimization [7],
fuzzy logic [8], chance constrained programming [9],
differential evolution [10], improved gravitational search
algorithm [11], quantum-inspired binary gravitational search
algorithm [12], adaptive modified gravitational search
algorithm [13]. Apart from these single approaches, some
hybrid methods are proposed, namely hybrid of branch and
bound with dynamic programming [14], fuzzy logic based
mixed-integer linear programming [15], fuzzy logic based
particle swarm optimization [16], hybrid of Lagrange
relaxation and priority list method [17], hybrid of sequential
quadratic programming and particle swarm optimization [18].

The objective of this work is to integrate the wind
generators with the conventional thermal units and to
investigate the problem via numerical solutions. The proposed
WTUC model is formulated as a nonlinear, mixed-integer,
combinatorial optimization problem considering various
constraints. In WTUC model, the wind power is modeled
using the two-parameter Weibull distribution. Based on the
Weibull distribution, the cost related to overestimation and
underestimation of wind power is considered in the proposed
WTUC model. In terms of the problem solver, the proposed
models, namely NBABC algorithm, NBABC-LS and
NBABC-GC are developed to decide the on/off status of the
wind and thermal units during the planning period. Once the
on/off status is decided, the lambda iteration method is used to
dispatch the load demand among the committed thermal units.
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The quality of the solutions is further enhanced by using the
heuristic constraints repairing and unit decommitment
strategies that keep the search space feasible throughout the
iterative process. Finally, the performance of the proposed
models is analyzed and tested on a modified 10-unit IEEE
thermal test system integrated with the large-scale wind farm
having 50 identical wind turbines over the scheduled time
horizon of 24 hours. In order to validate the results obtained
by using NBABC, NBABC-LS and NBABC-GC methods, the
same WTUC problem is also solved by using GA.

I1. PROBABILISTIC MODELING OF WIND POWER

The power output characteristics of Wind Turbine
Generator (WTG) are quite different from those of
conventional thermal generating units. The generated wind
power varies with the wind speed of the wind farm site and it
is essential to accurately evaluate the electric power generated
by a wind unit located at a particular geographic site during
the generation scheduling. Previous research [19] has shown
that the wind speed profile at a given location most closely
follow the Weibull distribution over time. The Probability
Density Function (PDF) and Cumulative Density Function
(CDF) for the two-parameter Weibull distribution are given

as:
¢ K- K
f\,(v‘):k—t(v—tJ xexp{—[v—tj :‘ ;0<vi <o (1)
c'\c c

Fv(vl)zl—exp{—(\é—t] :l ; 0<V <o 2

where f, (V') and F, (V') are the PDF and CDF of the wind

speed (V') at time t, respectively, V is the wind speed random
k'>0 is the

(dimensionless) and ¢' >0 is the scale parameter at time t in
m/s.

After the characterization of wind speed as a random
variable, the output power of the WTG may also be
characterized as a random variable through a transformation
from wind speed to output power. The power output of a wind
turbine could be determined from its power curve shown in
Fig. 1, which is a plot of output power against wind speed. A
WTG is designed to start generating power at the cut-in wind
speed (V;) and is shut down for safety reasons at the cut-out

variable, shape parameter at time t

wind speed (V, ). When the wind speed is in between the rated
speed (V, ) and the cut-out speed, the WTG generates its rated
power (W, ). The output power varies linearly with speed in

the region between cut-in and rated speeds [18]. It is
calculated as:

0 ;for vi<v, or v' v,
t
vi-v,
w = wr( ) ;for v <vi <y, (3)
(Vr_vi)
. t
w, sfor v, <vi <y,

where W' is the WTG power output (a realization of the wind
power random variable) and v' is the wind speed at time
instant t (a realization of the wind speed random variable).

=

Power Output
MW)

0 v, v, v
Wind Speed (m/s)

Fig. 1 Power curve of a wind turbine

Here, the WTG power output is a mixed random variable,
which is discrete at values of zero and rated power output, and
is continuous between values of zero and rated power. Now, it
is essential to transform wind speed distribution to wind power
distribution with V as the wind speed random variable and W
as the wind power random variable. It is done as follows [18]:
For discrete portions of the WTG power output random
variable, the probabilities of getting no power output and rated
power output are as:

Pr(W =0) = l—exp{—(v—i) }+ exp{—(v—f) } 4)
C c
v ¢ V, ¢
el 4l 5] o
C C

The Weibull PDF ( f,(W')) of the WTG power output

random variable in the continuous range is obtained as:

k'-1

(Vr_vi)'Wl+V
kt'(vr_vi) W, i
fu (W) = Cwo ¢!
. (6)
(v, V)W ‘
- +V,
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III. WTUC PROBLEM FORMULATION

This section describes the formulation of conventional
thermal unit commitment problem including wind power.

A. Objective Function

The main objective of WTUC problem is to determine the
optimum on/off status of the thermal and wind units so that the
total operating cost is minimized while satisfying various
constraints over the scheduling time horizon of 24 hours with
one-hour time interval. Mathematically, the problem [18] to be
minimized is represented as:

T N
TOC =Y > [F(PHU! +UL(1-U"HSUC, +U\ " (1-U})SDC,, ]

t=1 i=1

23

=z

w

[F(w)+c S(w =W, )+Cy (W, - ‘)]-Q;

(7
where
F.(P')=a +b xP'+¢ x(P") ®)
HS, if Tgom STor < Tigom + T,
SU;, = ©)
’ CS,, if T off >T, down Tu.cold
Fi(wj)=d;-w, (10)

t
W

Cyy (W =W}, ) = ; [ (W —w')- f, (WH)dw (11)

W

Cu,j (th,av _le ) = :uu,j J (W‘ _Wtj) fw (Wt)dW (12)

where TOC is the total operating cost in $, F(P') is the

thermal production cost of i™ unit at time t in $/h,a;, b, and

¢, are the fuel cost coefficients of i" thermal unit, P' is the

real power generation of ™ thermal unit at time t in

MW, SU; s the start-up cost of i thermal unit, F(w)) is
the cost function of j™ wind unit at time t, which represents
the payment to the wind farm operator for utilizing the wind
unit, C,;&C,; represent the cost function associated with
over- and underestimation of wind power for j" wind unit
respectively, W; is the scheduled wind power for the j" wind

. . t
unit at time t, W/,

the j" wind unit at time t, U & Q! are the on/off status of i"

represents the available wind power for

thermal and " wind units at time t respectively, N; &N,
are the total number of thermal and wind units respectively is
and T are the

the scheduling time intervals,T, i.cold

> Vi,down

minimum down time and cold start-up time of i" thermal unit

in hours respectively, Ty is the continuously-off time of
" thermal unit till time t in hours,d j is the direct cost
coefficient for the j" wind unit, 4, ; is the penalty cost

coefficient of buying power from reserve owing to
overestimation of wind power in $/MWh for the j" wind unit,

4, ; 1s the penalty cost coefficient for the wastage of excess
wind power in $/MWh for the " is the rated

wind unit and f,, (W') is the WTG
wind power PDF represented in (4)-(6).

wind unit, w, ;

generating capacity of "

B. Constraints
The various constraints imposed on WTUC problem are as
follows:
1) System Power Balance Constraint: The power generated
from all the committed thermal and wind units must
satisfy the hourly load demand over the planning period:

Ny

NW
DRLUAY W Q=R 5 t=1,2,.,T  (13)
w=1

i=1

where P} is the load demand at hour t in MW.

2) Thermal Unit Ramp Rate Limits: Practically, the
operating range of all thermal generators is limited by
their ramp rate limits that are considered as:

when unit i ramps up

Pil _ Pil—l S URI
(14)

P —P'<DR  when unit i ramps down

where UR; and DR, are the ramp-up and ramp down limits of

i" thermal unit in MW.

3) Thermal Generation Limit Constraints: Each committed
thermal unit must be within its specified generation limits
as:

P™U <P'<P™U! (15)

where P™ and P™ are the minimum and maximum power

generation capacities of i™ thermal unit in MW.

4) Wind Generation Limit Constraints: The power generated
from each wind unit must be within its specified limits as:

D j=12,.N,;t=12,...T (16)

ws

5) Spinning Reserve Constraint: Spinning reserve should be
available during the operation of a power system and
considered as a pre-specified value or a given percentage
of the forecasted demand and wind capacity at a particular
time instant t as mentioned below:

i - {HSR )><P‘+SRN><Z j} (17)

i=1 j=1
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where SR; is the fraction of total system load at time t in MW
and SR, is the fraction of total wind power employed to

compensate wind power prediction errors (%)?

6) Thermal Unit Minimum Up/Down Time Constraint: A
unit must be kept online or offline for a minimum number
of hours before committing (0 —1) and decommitting
(1>0)as:

01, if T\ =T,

i,down
U/ =:1-0,if Tifu’n‘ 2T, (18)
0 or 1, otherwise

where T, is the minimum-up time of i thermal unit in

t-1
hours, T,

.1 is the continuously-on time of i thermal unit till

hour (t-1) in hours.

IV. ARTIFICIAL BEE COLONY (ABC) ALGORITHM

ABC is a population based meta-heuristic algorithm
developed by Karaboga and Basturk [20], which is inspired by
the intelligent foraging behavior of honeybee swarm. In this
algorithm, the bees are classified into three categories namely
employed, onlooker and scout. When an initial colony is
generated randomly, the employed and onlooker bees exert a
probabilistic modification on the position of current food
sources for finding the new food sources using the difference
equation as:

Vig =Ufg +wig(ufy —u/y) (19)

where j€{L,2,..,N,}, de{l,2,..,D}, D is the dimension of
the food source and k is randomly selected food source in a
colony such that k= j,ul,, uly and v}, are the old,
randomly and newly generated food source positions in a

colony at the g" cycle respectively, v}, is a random variate

scaling factor between from 0 to 1 and N, is the colony size.
On the other hand, the onlooker bees tend to choose a food
source based on the probability (p,;) proportional to the

quality of that food source given as:
Ne
P, = fitj/z fit,, (20)
m=1

where fit, is the fitness value of the j" food source

representing the nectar amount consist by that food source.

If the position of a food source in a colony is not updated
after a predefined number of cycles called ‘limit’ (€ ), then the
scout bee replaces that source with the new randomly
generated food source as:

Xpq =X +(X™ —xg"™ ) x rand (0,1) 21)

max

where X" and X are the lower and upper limits of the

a” parameter respectively and can be either 0 or 1 for WTUC
problem.

V.PROPOSED OPTIMIZATION MODELS FOR WTUC PROBLEM
In this section, the three optimization models namely
NBABC, NBABC-LS and NBABC-GC are presented to solve
the WTUC problem over the scheduling time horizon of 24
hours.

A.A New Binary Artificial Bee Colony Algorithm

The decision of WTUC problem incorporates the binary
variables, and thus the difference equation (19) used in the
original ABC algorithm could not be applied directly for the
solution of WTUC problem. Therefore, in this work, an
algorithm is presented, which is based on the new strategy that
measures the dissimilarity between two binary strings and
shows how far the two binary strings are apart from each other.
The concept of similarity between two binary strings indicates
that they share a common pattern among their bits [21]. The
difference equation (19) can be adjusted to get
V7 -=UJ =yx(U] -U/) and replacing arithmetic operator “-”
with “dissimilarity” measure that quantifies the distance
between two binary strings. Thus, the new difference equation
is obtained as:

Dissimilarity(V,’,U}) ~ yx Dissimilarity U7 ,U?) ~ (22)

where V!,

Uf and U/ are the new, old and randomly
selected food sources respectively at the g” cycle in a colony

and representing the possible solutions of WTUC problem and
vy is a positive random variate scaling factor from 0 to 1.

g

The reason of introducing the (almost equal) operator
in place of “=" (exactly equal) operator is that the newly
generated solution may not be equal to the randomly selected
solution in (22) due to the difference in the on/off status of the
units. Now let us consider L, represents the total number of

bits with value 1 in both U] and U (i.e. U 4= U, ,=1), Ly,
represents the total number of bits with value 0 in Ujg and 1 in
U; Ge. U;4=0andU, 4 = 1), L, represents the total number
of bits with value 1 in U]g and 0 in U] (i.e. Ujg=land U 4=
0) and finally L,, represents the total number of bits with value
0 in both UJand U] (e u,= Uu,= 0). Here
L,+ Ly, +L,+tL,= D. As per [21], Jaccard’s coefficient of

similarity is used to measure the degree of similarity between
U} and U} as:

SimilarityU ?,U¢) = L, AL, + Ly, +Ly,) (23)
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Therefore, the measure of dissimilarity between Ujg and

U/ is defined as:

Dissimilarity(U},U?) =1-Similarity(U’,U?) 24
=1-L,/(L, + L, + L)
The range of similarity and dissimilarity measure is 0 to 1. In
(22), let M = yxDissimilarity(U],U¢)then the value of
Dissimilarity(V?,UJ) must be close to the value of M. Now,
to produce the new binary solution VI the value of the
following three variables must be determined:

e N,,: Number of bits with value 1 in both V and U
e N, : Number of bits with value 1 in V’ and 0 in U}

o N, : Number of bits with value 0 in V' and 1 inU}

The optimum valuesof N;;, N, and N, is determined by
solving the mathematical model as follows:

Minimize | 1-N, /(N +N, +N,)—-M | (25)
subject to:
N, +N, =n (26)
N, <n, 27)
N> Ngis Ny, >0: and integer (28)

where n, and n, be the total number of bits with value 1 and 0

in Ujg respectively. It requires (n, +1)(n, +1) evaluations to

solve the above mathematical model (25)-(28) optimally.

1) Procedural Steps for Generating New Binary Solutions
for WTUC Problem Using NBABC Algorithm:

Step 1:Calculate the value of M using M =

yx Dissimilarity(U?,U/) and use it in the mathematical

model (25)-(28) to determine the values of N, ,
Ny and N, .

Step 2:Initialize V by a (1x D) zero vector.

Step 3:Randomly select N, number of zero bits from
ng which their corresponding bits in Uf is 1 and then
flip the selected bits in V;’ from 0 to 1.

Step 4:Randomly select N, number of zero bits from
ng which their corresponding bits in Uf is 0 and then
flip the selected bits in V;’ from 0 to 1.

Step 5:The new binary solution ng is generated. Repeat the

procedure for other binary strings.

2) Choice of the Value of ¢ : In order to avoid the slow and

premature convergence speed, it iS more appropriate to
use the dynamic value of v . It depends on upper value

(vy,..) and lower value (y , ) that changes linearly
throughout the iterative process as:

\Ilg = \Vmax _((\Vmax _\Vmin )/ gmax)>< g (29)

. are the current and maximum number of

cycles respectively.

3) Intelligent Scout Bee Phase: In an original ABC
algorithm, the scout bee generates the new source
randomly in order to replace the abandoned food source in
a colony. But this randomly generated food source may
not be feasible [22]. Therefore, in this work, the
abandoned food source is replaced with the so-far found
global best solution as:

where g and ¢

Uy =U, (30)

ghest

where U? is a newly assigned food source at the gth cycle
and U}

gest 18 the so-far found global best solution till cycle g.

B. Hybridizing Local Search with NBABC Algorithm

In this work, a swap move-based Local Search (LS) operator
is integrated with the NBABC algorithm to form NBABC-LS
algorithm. This LS operator exploits the neighborhood region
of the current solution determined by NBABC algorithm and if
a better solution exists, then it replaces the current solution
with the so-far found best neighborhood solution. The
operation of LS operator is based on the swap moves that flip
the bit from 0 to 1 and vice versa in such a way that the total
number of online units over the complete planning period in an
individual string in a colony remains same. Basically, it has
two input parameters, namely o, and B, out of which

Oy controls the rate of recalling the LS in NBABC
algorithm, whereas [, determines the number of food

sources in a current population on which the LS operator is to
be performed. During the iterative process, whenever the value
of uniformly distributed random number is less than or equal to
the value of o, ie. rand(0,1)<o,., ., the LS operator is

applied to the number of B, food sources in a colony.

C.Hybridizing Genetic Crossover with NBABC Algorithm

In order to enhance the exploration capability of the NBABC
algorithm for solving the WTUC problem, the third model is
proposed in which the Genetic Crossover (GC) is integrated
with the NBABC algorithm. Since, each high ranking local

best solution U, rather than a single global best solution
Ué’bes[ may have a useful property that could be shared to

evolve a new food source. Therefore, in each cycle, the 2-point
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crossover operator is applied between U, (best food source

in a current cycle) and Ugbes1 (best food source till the current

cycle) to generate the two new genotypes. Out of the four food
sources, the best food source having higher fitness value

replaces the UggbeS[ and thus maintain the diversity in the

solution search space. In any cycle, if the local best solution is
same as the global best solution, then the next local best
solution in a colony of the current cycle is selected for
crossover with the global best solution.

D.Constraint Repairing Strategies

When an initial solution is randomly generated or whenever
the modification in the position of food sources is made by the
employed and onlooker bees, then the constraints of the
problem may violate typically the load balance and minimum
up/down time constraints that makes the solution infeasible.
Also, it slows down the convergence process. Therefore, in this
work, the repairing strategies as suggested in [23] are adapted
to satisfy these constraints in order to obtain the feasible
solutions during the iterative process.

E. Wind and Thermal Dispatch

Once the on/off status of the thermal and wind units are
decided over the complete scheduling time horizon, the hourly
load demand is dispatched economically among the committed
thermal and wind units. First, the output of wind generation
unit is calculated, which is closely related to the wind speed at
the height of unit hub. The available power of the wind that

crosses the rotor of the j" WTG [24] at time t (Pj,) is

calculated as:
t 1 )3
Pj’wzz'p'A'(V) (31)

where p is the air density in Kg/m?, Ais the rotor swept area in

m2and V' is the wind speed at time t.
The wind generator can recover some of this wind power
and represents the power produced by the wind generator ( le,c)

as:
Pi.=C,xP, 32)

where C, is the power coefficient of WTG, which is a

nonlinear function of the tip speed ratio and pitch angle [25].

Since the wind speed profile at a particular geographic
location most closely follow the Weibull distribution over time.
Therefore, the expression for calculating wind power
generation in (31) is modified based on the Weibull PDF and is
expressed as [26]:

w! :%-p-A-(C‘)S-F(1+%) (33)

where w; is the scheduled wind power of the j™ wind unit at

time t, k' >0 is the shape parameter at time t, ¢' >0 is the
scale parameter at time t in m/s and T'(-) is the gamma function

represented as folows:
r(z):sz*‘ e%ds; $>0 (34)
0

In order to calculate the wind power using (33), the Weibull
shape and scale parameters (k' and c¢') need to be estimated.
For this purpose, the energy pattern factor method [27] is used
for the measured wind speed data. It is defined as:

E, = U )33 (35)
v)

—

where E is the energy pattern factor, (V') is the mean of

hourly wind speed cubes and V' is the mean of hourly wind
speed. Now, the Weibull shape and scale parameters are
estimated as:

K =149 (36)
EZ
pf
e T (37)
C(1+1/kY

After obtaining the scheduled wind power over the planning
period, the residual load demand is calculated by subtracting
the magnitude of the scheduled wind power from the hourly

system load demand ( P}). Hereafter, this residual load demand

obtained in each hour is dispatched economically over the
committed conventional thermal units with and without
considering ramp rate limits. The classical lambda iteration
method is used to calculate the output power of each
committed thermal unit. When ramp rate constraints are
considered, the minimum and maximum generation capacities
of thermal units are modified based on the ramp rate limits as
in (14). The procedural steps for performing dispatch are as:

Step 1:Set time counter t = 1.

Step 2:Calculate the scheduled power of each committed wind
unit using (33).

Step 3:Use lambda iteration method to calculate the output
power of each committed thermal unit without
considering ramp rate limits and go to Step 6.

Step 4:Modify the generation capacities of each committed
thermal units based on the ramp rate limits.

Step 5:Perform economic dispatch on committed thermal units
using lambda iteration method to calculate the output
power at time t.

Step 6:1f t<T, set t=t+1 and go to Step 4; else, print the
optimum dispatch schedule.
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VI. COMPUTATIONAL FRAMEWORK OF PROPOSED
OPTIMIZATION MODELS FOR WTUC PROBLEM

The computational framework for solving the WTUC
problem is presented as follows:

Step 1: Load historical wind speed and turbine data, thermal
unit data and load pattern.

Step 2: Randomly generate the initial population of food
sources in which each food source represents the units
on/off status over the complete scheduling time
horizon, and thus consist of (N; +N,)xT bits. The

string is represented as:

X;=[U} ..Ul ..Ul . U, U .U

Q - Q. Q. Q Qe Q] (38)

Step 3: Apply constraint repairing strategies on infeasible
strings and then perform economic dispatch on
feasible strings as described in Section V E.

Step 4: Evaluate the fitness function of each food source using
(.

Step 5: Identify Up, and Ug of the population.

Step 6: Start employed bee phase and generate the new
colony. Apply constraint repairing strategies on
infeasible strings and then perform economic dispatch
on feasible strings. Evaluate the fitness of new food
sources in a colony. If a new solution is fitter than the
old one, then a new solution replaces the old one.

Step 7: For NBABC-GC algorithm, update U and Ug of
the colony and then apply genetic crossover between
Upew and Ug., to further update the Ug., food

source position.
Step 8: Start onlooker bee phase to update the positions of
food sources based on the probability ()

proportional to the quality of that food source
calculated using (20). If a new food source position is
fitter than that of old one, then it replaces the old food
source position. Here, the Roulette wheel selection
mechanism is used to select the food source sites
based on their fitness values.

Step 9: For NBABC-GC algorithm, update U, and Uggbest of
the colony and then apply genetic crossover between
Upe and Ug, to further update the Ug. food

source position.

Step 10: Perform intelligent scout bee phase.

Step 11: For NBABC-LS algorithm, apply a local search
operator to modify the food source positions in a
colony and then perform Step 3 and Step 4 to evaluate
the fitness of new food source positions. If a new food
source position is fitter than that of the old one, then it
replaces the old food source position.

Step 12: Memorize the best solution found so far and increment
the cycle count.

Step 13: Terminate the process if the maximum number of
cycles are reached and print the optimum WTUC
schedule. Otherwise, increase the cycle number and go
to Step 6.

VII. RESULTS AND DISCUSSION

In order to verify the feasibility and efficiency of the
proposed optimization models namely NBABC, NBABC-LS
and NBABC-GC for solving WTUC problem, these are tested
on a modified 10-unit IEEE thermal test system integrated
with the wind farm consisting 50 wind turbines of the same
type with rotor diameter of 90 m. Each turbine rated power is
3.0 MW, cut-in wind speed V, = 4 m/s, cut-out wind speed
V, =25 m/s and rated wind speed is Vv, = 16 m/s that are taken
from [18]. Here, the whole wind farm would be regarded as

one unit to participate in the commitment and dispatch
process. The underestimated unbalanced coefficient (4, ;)

and the overestimated unbalanced coefficient (g, ;) are

considered as 10 and 15 $/MWh respectively. The wind speed
historical data are adopted from the wind observation station
[28]. The 10-unit thermal system data and load demand are
adopted from [23]. The program is written in MATLAB and is
performed on Intel (R) core (TM) 2 duo T6600 @ 2.20 GHz
processor with 32-bit operating system.
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[a ¥

0,02

5 5 15 25 35

wind speed (m/s)
(a)
1,2
1

z 0,8

T 06

2

g 04

= 032
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Fig. 2 Weibull (a) PDF (b) CDF for k= 1.76 and ¢ = 7.58

The wind speed probability distribution at the wind farm
site is characterized by the Weibull parameters (k' and c').
The curves of Weibull probability and cumulative distribution
functions for the obtained wind speeds are illustrated in Fig. 2.

To tune the parameters of the NBABC and NBABC-GC
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methods, namely bee colony size (N,), maximum cycle
number (g, ), limit count (€) and random variate scaling
factor (y ), whereas local search parameters (0, and By )
in combination with N,, v , € and g, for the NBABC-LS
method. For Dbetter convergence characteristics, these
controlling parameters must be tuned optimally. During the
parameters sensitivity analysis for all the three methods, the
colony size was set not more than 40 to show the effect of a
small colony size, and the maximum cycles (g, ) were set

not more than 200 in order to reduce the computational
overhead. The range of y is considered as [0,1]. In order to
enhance the exploration during the initial process, higher value
of  is used initially and with the lapse of iterations it
decreases gradually and finally set to a minimum value i.e.
exploration fades-out and exploitation fades-in using (29). The
value of € is set as 10 to 40 cycles with a step size of 10 for
each food source in the colony. The range of o, is
considered as [0.01, 0.3], which is appropriate to exploit the
neighborhood of the current food source. Whenever slow or
premature convergence is observed, the value of o, is
increased or decreased by 0.01, respectively. The local search
is performed on each food source in a colony and therefore,
the value of B, is same as colony size. The best found
parameters of NBABC algorithm are N, =20, g, =200, y
=10.5,0.1], € =20. The best found parameters of NBABC-LS
method are N, =20, ¢, =200, y =[0.5-0.1], € = 20,
Ot = 0.02 and B, is set equal to N,. The best found
parameters of NBABC-GC algorithm are N, = 20, ¢, =
200, ¢y =[0.9-0.1], € =30.

In order to compare the optimal characteristics of the
proposed methods, the same WTUC problem is also solved by
using GA. To tune the GA parameters, ten random trials were
conducted on the considered test system for both case studies.
The best found parameters of GA are population size = 30,
maximum generation count = 200, crossover probability p,=

0.8 and mutation probability p,=0.012.

In order to guarantee the robustness of the proposed
methods, the simulation is repeated 30 times over the best
found parameters. When thermal ramp rate constraints are not
considered, the values of SR, and SR, are set as 10% of the

hourly load demand and 5% of the online rated wind unit
capacity, respectively. The total System Reserve Requirement
(SRR) is calculated by using (17). For instance, the SRR
without ramp rate constraints at hour 12 is 157.5 MW, which
is obtained by summation of the two parts; the first part is 150
MW (10 % of the total load) and the second part is 7.5 MW (5
% of total rated capacity of the wind farm). This is the
maximum possible reserve that can be distributed on the
thermal units. When ramp rate constraints are considered, the
fixed value of SR, is not considered in each hour, whereas the

value of SR, is set as 5% of the online rated wind unit
capacity. Moreover, the thermal units ramp-up (UR;) and
ramp-down (DR;) limits are considered as 20% of the

maximum capacity of units. Therefore, the MW/hour values of
UR; and DR; for thermal units 1 to 10 in 10-unit system are

setto 91, 91, 26, 26,33, 17, 16, 11, 11, and 11, respectively.

TABLEI
OBTAINED WEIBULL PARAMETERS FOR THE HISTORICAL WIND DATA
Hour 1 2 3 4 5 6
Kt 1.53 1.49 1.53 1.49 1.41 1.43
c' (m/s) 6.35 5.96 5.57 5.76 5.59 5.54
Hour 7 8 9 10 11 12
Kkt 1.44 1.36 1.47 1.66 1.82 1.83
' (m/s) 5.48 5.34 5.84 6.80 7.29 7.63
Hour 13 14 15 16 17 18
Kkt 1.77 1.76 1.87 1.90 2.07 1.90
c' (m/s) 8.22 8.66 8.97 9.34 9.67 9.09
Hour 19 20 21 22 23 24
Kt 1.90 1.78 1.63 1.53 1.50 1.35
c' (m/s) 8.61 7.77 6.90 6.71 6.66 6.56

Based on the wind speed data, the Weibull shape and scale
parameters (k' and c') are estimated and are provided in
Table 1.

The best generation schedules obtained in 30 runs using
NBABC-GC method without and with thermal unit ramp rate
constraints are presented in Tables II and III respectively.

In Tables II and III, T1 to T10 represent the scheduled
output of thermal units, WF is the scheduled output of a wind
farm comprises of 50 wind turbines and TOC is the total
operating expected cost of wind-thermal system. From these
tables, it is inferred that although the wind energy is freely
available, the wind unit is kept off for some hours. It is due to
higher expected costs associated with overestimation and
underestimation penalties on wind power fluctuations. It is
also observed from these tables that, in a 10-unit thermal
system, the first unit is the most economical unit and thus, set
at its maximum capacity (455 MW). Moreover, based on the
economic dispatch solution, thermal units 3 and 4 mostly run
at their maximum capacity (130 MW), if these units are
online. However, this is not always true when thermal ramp
rate limits are considered. Since, ramp rate limits modify the
minimum and maximum thermal generating capacity of units,
and thus making them a function of time in this process. It can
be seen in these tables, the inclusion of thermal ramp rate
limits not only changes the on/off status of the thermal and
wind units, but the thermal generation values are also changed
for the same on/off status at a particular time interval. It
results in higher total operating cost of WTUC system, which
is increased by $2216.09 compared to the wind-thermal
schedule without thermal ramp rate limits obtained using the
proposed NBABC-GC method.
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TABLE II
BEST GENERATION SCHEDULE OBTAINED USING NBABC-GC METHOD IN 30 RUNS WITHOUT RAMP RATE CONSTRAINTS
T Units output power (MW) TOC ($/h)
Tl T2 T3 T4 TS T6 T7 T8 T9 TI0 WF
1 455 245 0 0 0 0 0 0 0 0 0 13,683.07
2 455 279.18 0 0 0 0 0 0 0 0 15.82 14,581.03
3 455 35778 0 0 25 0 0 0 0 0 12.22 17,754.93
4 455 455 0 0 40 0 0 0 0 0 0 18,597.47
5 455 37547 0 130 25 0 0 0 0 0 14.53 20,612.99
6 455 360 130 130 25 0 0 0 0 0 0 23,487.18
7 455 410 130 130 25 0 0 0 0 0 0 23,262.03
8 455 44632 130 130 25 0 0 0 0 0 13.68 24,175.35
9 455 455 130 130  69.78 20 25 0 0 0 15.22 28,096.74
10 455 455 130 130 15549 20 25 10 0 0 19.51 30,024.04
11 455 455 130 130 162 51.90 25 10 10 0 21.10 31,835.31
12 455 455 130 130 162 30 25 1885 10 10  24.15 33,690.08
13 455 455 130 130 143.55 20 25 10 0 0 31.45 29,797.74
14 455 455 130 130  48.05 20 25 0 0 0 36.95 26,954.73
15 455 42199 130 130 25 0 0 0 0 0 38.01 23,921.88
16 455 267.69 130 130 25 0 0 0 0 0 42.31 21,254.73
17 455 21740 130 130 25 0 0 0 0 0 42.60 20,358.07
18 455 32094 130 130 25 0 0 0 0 0 39.06 22,158.59
19 455 427.05 130 130 25 0 0 0 0 0 32.95 23,984.02
20 455 455 130 130 148.68 20 25 10 0 0 26.32 30,362.47
21 455 455 130 130 63.99 20 25 0 0 0 21.01 27,176.40
22 455 455 0 0 123.60 20 25 0 0 0 21.40 22,646.17
23 455 420 0 0 25 0 0 0 0 0 0 17,684.64
24 455 319.22 0 0 0 0 0 0 0 0 25.78 15,371.88

Total operating cost (TOC) over 24-hour time horizon

$561,471.54

TABLE III
BEST GENERATION SCHEDULE OBTAINED USING NBABC-GC METHOD IN 30 RUNS WITH RAMP RATE CONSTRAINTS
T Units output power (MW) TOC ($/h)
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 WF
1 455 226.79 0 0 0 0 0 0 0 0 18.21 13691.86
2 455 27918 0 0 0 0 0 0 0 0 15.82 14581.24
3 455 370 0 0 25 0 0 0 0 0 0 17,709.62
4 455 455 0 0 25.75 0 0 0 0 0 14.25 18,597.45
5 455 390 0 130 25 0 0 0 0 0 0 20,580.12
6 455 34621 130 130 25 0 0 0 0 0 13.79 23524.22
7 455 410 130 130 25 0 0 0 0 0 0 23261.81
8 455 455 130 130 30 0 0 0 0 0 0 24,150.15
9 455 455 130 130 63 42 25 0 0 0 0 28163.92
10 455 455 130 130 96 58 25 0 31.49 0 19.51 30265.45
11 455 455 130 130 129 74 25 1041 2049 0 21.10 31956.20
12 455 455 130 130 162 80 25  18.85 10 10 24.15 33690.12
13 455 42555 130 130 129 64 25 10 0 0 31.45 29,984.67
14 455  379.06 130 130 96 48 25 0 0 0 36.95 27232.93
15 455 384.01 130 130 63 0 0 0 0 0 38.00 24018.46
16 455 293.01 105.75 123.93 30 0 0 0 0 0 4231 21278.12
17 455 260 130 130 25 0 0 0 0 0 0 20,641.71
18 455 351 130 130 34 0 0 0 0 0 0 22,408.96
19 455 442 130 130 43 0 0 0 0 0 0 24182.05
20 455 455 130 130 76 80 25 22.68 0 0 26.32 30573.87
21 455  431.99 130 130 43 64 25 0 0 0 21.01 27356.02
22 455 455 0 0 76 67.60 25 0 0 0 21.40 22759.48
23 455 380.24 0 0 43 0 0 0 0 0 21.76 17707.48
24 455 319.22 0 0 0 0 0 0 0 0 25.78 15,371.72
Total operating cost (TOC) over 24-hour time horizon $563,687.63
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Figs. 3 and 4 illustrate the convergence characteristics
obtained by using GA, NBABC, NBABC-LS and NBABC-
GC methods for the best run out of a set of 30 runs without
and with thermal ramp rate constraints, respectively. From
these figures, it is deduced that starting with the same initial
point, NBABC-GC method is capable in reaching to the better
optimal solution at the end of the convergence process
compared to GA, NBABC, NBABC-LS, and NBABC-GC
methods. It is because; the genetic crossover explores the
search space rapidly by comparing the local best solution with
the so-far found global best solution during the iterative
process and thus avoids the problem of slow and premature
convergence problems. Moreover, the constraints repairing
and unit decommitment strategies keep the search space
feasible throughout the iterative process. From Fig. 4, it is
deduced that the GA method becomes more sluggish with the
incorporation of ramp rate constraints compared to that

without ramp rate constraints. It is due to the more local
trappings encountered with the GA method during the search
process.

Fig. 5 shows the solution quality of the schedule obtained
using NBABC-GC method without thermal ramp rate
constraints. From Fig. 5, it is inferred that the sufficient
amount of maximum online capacity of thermal units is
available in each hour to satisfy the load demand and spinning
reserve requirements.

The statistical comparison of the obtained results in terms of
total operating cost (best, average and worst), mean time and
standard deviation (STD) using proposed methods are
presented in Table IV. It is inferred from this table that when
thermal ramp rate constraints are not considered, the best cost
achieved by using NBABC-GC method is $ 50.93, $ 233.28
and $ 393.53 less than that obtained by using NBABC-LS,
NBABC and GA methods, respectively. However, when
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thermal ramp rate constraints are considered, the NBABC-LS
method is successful in achieving the same best cost as
obtained using the NBABC-GC method. It is $ 533.25and $
1121.99 less than that obtained by using the NBABC and GA
1700
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methods, respectively. From Table 1V, it is inferred that the
NBABC-GC method is capable to achieve the quality cost
solutions in less execution time compared to all the other
methods.
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Fig. 5 Comparison between available total online generation capacity, load and demand considering spinning reserve without ramp rate
constraints using NBABC-GC method

TABLE IV
STATISTICAL COMPARISON OF THE PROPOSED METHODS

without thermal unit ramp rate constraints

Average ~ Worst Cost ~ Mean
Methods  Best Cost ($) Cost (8) ) Time (s) STD
GA 561,865.07 561,996.77 562,181.36  46.61  103.30
NBABC 561,704.82  561,839.94 561,993.07  50.29 94.55

NBABC-LS 561,522.47 561,662.90 561,838.95 39.13 85.48
NBABC-GC 561,471.54 561,624.47 561,754.24  34.80 86.74

with thermal unit ramp rate constraints

Average Worst Cost Mean
Methods  Best Cost ($) Cost (3) ©) Time (s) STD
GA 564,809.62 565,030.50 565,616.04 81.07 24476
NBABC 564,220.88 564,591.18 564,877.61 79.52  187.84

NBABC-LS 563,687.63 564,059.06 564,362.15 67.45  183.39
NBABC-GC 563,687.63 564,017.91 564,185.36 59.86  161.82

VIII.CONCLUSION

In this paper, the proposed optimization models namely
NBABC, NBABC-LS and NBABC-GC are successfully
applied to solve the WTUC problem over the 24-h scheduling
time horizon. The uncertain nature of the wind speed has been
represented by the Weibull probability distribution function.
In addition, the wind generator cost modeling in terms of
penalties associated to over- and underestimation of wind
power has been successfully incorporated in the WTUC
model. To compare the results obtained by using the proposed
methods, GA has been utilized to solve the same WTUC
problem. The numerical results show that the sufficient
reserve has been maintained in the system that could cater the
generation deficit occur due to load forecasting and wind
prediction errors. The extensive computation study reveals
that the NBABC-GC method is capable to provide quality
solutions in terms of minimum total operating cost and
execution time, when applied repeatedly to solve the same

WTUC problem. Compared to all other methods, the NBABC-
GC method has enhanced the quality of the solutions and
therefore could be used as an efficient optimization tool for
practical applications.
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