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Some considerations were done about system, like: 
 Adiabatic dryer; 
 Velocity constant; 
 Parallel flow 
 Negligible mass and heat transfer in the r and θ directions; 
 Friction will be not applicable; 
 Dryer rotation gives homogeneity of the stream; 
 Conductivity and diffusivity will be considered constant 

throughout the dryer; 
 Constants physical proprieties; 

Table I shows some information about the drying process of 
the corn [1]. 

 
TABLE I 

INFORMATION ABOUT THE DRYING PROCESS OF CORN 

Moisture initial 20% b.u. 

Final Moisture 12,5% b.u. 

Temperature initial of the corn 296 K 

Temperature final of the corn 327K 

Temperature of the air dryer 373K 

Flow of the corn 1250kg 

A. Mass Balance 

The mass balance has been used to establish the humidity 
profile on the dryer length. To describe the mass transfer in 
the rotary dryer the Fick’s Law [4] was used. 

The driving force for mass transfer is typically a difference 
in chemical potential, which can be defined by means of other 
thermodynamic gradients. It is clear that the chemical species 
move from areas of high chemical potential to low chemical 
potential. 

The mass balance in the differential form on an 
infinitesimal element of ρ density and velocity v in Fig. 1 can 
be given by: 

 

∑ 	௘ߩ ∗
௡
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where the elements with sub index i represents the input 
system and, f, the outlet. 

By presenting cylindrical features, the development of (2) 
must be performed in cylindrical coordinates. Since in drying 
systems no reaction occurs, so the following equation can be 
formulated: 
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Replacing Fick Equation of diffusivity in (2), we have: 
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where vi, vθ, vz, Dij and Xi respectively corresponding to speed 
components in axes, diffusivity coefficient and moisture of the 
component "i". 

Applying the considerations about the system in (3), we 
have (4) that represents the profile of moisture along the dryer 
length: 
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B. Energy Balance 

Analogous to mass balance, for obtaining the temperature 
profile along the dryer, the First Law of Thermodynamics 
differential is applied to both flow of the drying process, by 
producing the general heat balance shown in (5): 
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where Et corresponds to total energy, EP is the potential 
energy, EC kinetic energy, U internal energy, ሶܳ  denotes the 
heat transfer and ሶܹ  the system work. 

Analyzing the behavior of the work in the process, two 
segments can represent it: The working pressure and work 
generated in the control volume (VC). 
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Developing the energy balance equation, we have:  
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Knowing that dH= dU+Pdv+VdP and considering that V is 

constant we obtain:  
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If kinetic and potential energy are constants in the drying, 

and the work in the control volume is disregarded we have: 
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The conduction is the mechanism of heat transfer that 

prevails in the drying. The law that describes this process is 
Fourier ‘Law. Therefore, substituting the Fourier Law in (8) 
we will have: 
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The enthalpy and internal energy are functions of the 

temperature and theirs derivate can be replaced. Doing the 
substitutions and the considerations in (10), we will have the 
equation that describe the profile temperature of the dryer in 
function of the time and length of the dryer.  
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where;  
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C. Entropy Balance  

The entropy is a feature of the system and is related to the 
measurable properties of their components [8]. Analogous to 
the heat and mass balance, the entropy balance can be applied 
in an element of de volume v and density ρ of Fig 1.  

A new term, called entropy generation rate, is added in the 
entropy balance and represents the irreversibility of the 
system. 

The general entropy balance can be expressed by: 
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where there are the contributions to variation of entropy by the 
flow, heat and generation entropic. 

With the equation of the balance entropy, the generation 
entropy rate can be minimized. Knowing that entropy is 
function of the temperature, pressure and components 
numbers and with pressure constant in the system, we have: 
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Realizing the change of the term dS/dt in (11), assigning 

that the moisture corresponds to the propriety to contribution 
of the components and isolating the term to be minimized:  
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The minimization was done with restrictions of temperature 

once the quality of the corn is sensitive to the high 
temperature, so: 

 

Minimized 	 ௚ܵ௘௥ሶ  
 

Restriction T< T Drying 

 
The simulations were developing to find the optimal values 

to drying temperature and to get better the process. 

III. ANALYSIS AND DISCUSSIONS 

The equations that describe the drying behavior were 
simulated using Matlab platform. The implementation was 
done using techniques boundary value problems for analysis 
point to point along the dryer. 

With the application of the data’s about drying corns on (4), 
we obtained the profile of moisture for the grain and the air 
shown in Fig. 2. 

An adiabatic system was taken into account, ie, all the heat 
lost by the drying means is absorbed by the grain. In other 
words, the sensible heat lost by the air is passed to water 
evaporation from the grain so that the total heat system 
remains the same. 

 
 

 

 

Fig. 2 Moisture profile of the grain and air 
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IV. CONCLUSION 

We can conclude that the application of mass balance 
equations, energy and entropy combined with thermodynamic 
conditions can verify the behavior of elements within the 
dryer. 

Concentration and temperature profiles in addition to the 
loss of moisture behavior throughout the process can provide 
greater system control and product warranty specifications and 
guaranteed quality. 

The application of minimizing entropy production rate 
could help draw up action plans for improvement in plants 
using this process with the aim of reducing energy 
consumption, and can also be used for projection of rotary 
dryers. 
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