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 
Abstract—Recently nature–inspired algorithms have widespread 

use throughout the tough and time consuming multi–objective 
scientific and engineering design optimization problems. In this 
paper, we present extended forms of firefly algorithm to find optimal 
Golomb ruler (OGR) sequences. The OGRs have their one of the 
major application as unequally spaced channel–allocation algorithm 
in optical wavelength division multiplexing (WDM) systems in order 
to minimize the adverse four–wave mixing (FWM) crosstalk effect. 
The simulation results conclude that the proposed optimization 
algorithm has superior performance compared to the existing 
conventional computing and nature–inspired optimization algorithms 
to find OGRs in terms of ruler length, total optical channel bandwidth 
and computation time. 

 
Keywords—Channel allocation, conventional computing, four–

wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy 
flight distribution, optimization, improved multi–objective Firefly 
algorithms, Pareto optimal. 

I. INTRODUCTION 

HERE exists a rich collection of adverse nonlinear optical 
effects [1], [2] that degrade the performance of optical 

WDM systems. Out of these nonlinearities, the performance 
degradation by FWM crosstalk is a serious problem for WDM 
systems and can be minimized by unequal channel spacing 
concept [1], [2]. To minimize the FWM crosstalk effects in 
optical WDM systems, numerous unequally spaced channel 
allocation (USCA) algorithms [1], [3], [4] have been proposed, 
but have the drawback of increased optical bandwidth 
requirement. In order to minimize FWM crosstalk effects, this 
paper proposes an USCA algorithm based on OGR sequences 
[5], [6].  

Golomb rulers are an ordered set of non–negative integer 
locations  naaa  ...21  such that all the positive 

differences )1(, njiaa ij  are distinct [7], [8]. These 

non–negative integer locations are referred to as marks [5], [9]. 
An OGR is the shortest length ruler for a given number of 
marks [10], [11]. Multiple different OGRs can exist for a 
specific number of marks. By using OGRs in optical WDM 
systems, it is possible to achieve the smallest dissimilar number 
to be used for the optical WDM channel–allocation problem. 
As the difference between any two numbers is different, the 
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new FWM frequency signals generated would not fall into the 
one already assigned for the carrier channels. According to the 
literatures [7], [12], [13], Golomb rulers represent a class of 
NP–complete problems. For higher order marks, the exhaustive 
computer search [14], [15] of such NP–complete problems is 
difficult. There are numerous algorithms [14]-[16] to solve 
such a problem. To date, no better algorithm is known for 
finding the minimum length ruler. Numerous nature–inspired 
optimization algorithms and their hybridization have been 
efficiently realized in [9], [16]–[27] to solve such NP–complete 
problems that provide a good starting point for algorithms of 
finding OGR sequences. But, by using OGRs in optical WDM 
systems as an unequally spaced channel–allocation algorithm, 
there are two objectives (bi–objective) i.e. optimal ruler length 
and optimal total channel bandwidth. This paper presents the 
application of modified forms of Multi–objective Firefly 
algorithm (MOFA), to find either optimal or near–optimal 
rulers in a reasonable time and its performance comparison 
with the existing conventional i.e. Extended quadratic 
congruence (EQC) [1], [4] and Search algorithm (SA) [1], [4] 
and nature–inspired i.e. Genetic algorithm (GA) [9], and its 
simple form MOFA [22], [23] to find OGRs upto several order 
marks for WDM systems. The improvement in the 
performance of MOFA is performed by introducing the 
concept of random walk i.e. Lévy flight distribution [28], 
differential evolution mutation strategy [29] and parallelism. 
To our best knowledge, these improvements have not been 
implemented to find OGRs. 

II. MODIFIED MOFAS 

Due to highly nonlinearity and complexity, optimization in 
engineering design fields tends to be very tough and 
challenging. Since the use of conventional or exact algorithms 
for finding optimal solutions to a multi–objective engineering 
design problem is unpractical in terms of computational 
resources, so they are not best tools for global optimization. 
Nature–inspired multi–objective algorithms are very dominant 
in dealing with optimization design problems [30]. 

This section introduces the modified forms of MOFA [31]. 
Inspired by the flashing pattern and characteristics of fireflies, 
by using three idealized rules, Yang [32] developed an 
algorithm called Firefly algorithm (FA) for the optimization of 
single objective and extended it to solve multi–objective 
problems [31]. In FA, the variation of light intensity I and the 
formulation of attractiveness β with distance r between any two 
fireflies are two main issues [32]. For a given medium having a 

Improved Multi–Objective Firefly Algorithms to 
Find Optimal Golomb Ruler Sequences for Optimal 

Golomb Ruler Channel Allocation  
Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta 

T 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:7, 2016

351

fixed light absorption coefficient γ, the movement of a firefly i 
is attracted to another brighter firefly j is: 

 

   5.0
2

0  
randXXeXX ij

r
ii

ij                  (1) 

 
where I0 is original light intensity and β0 is attractiveness at r = 
0. rij is Cartesian distance [32] between any two fireflies i and j 
at locations Xi and Xj, respectively. The second term in (1) is 
due to attraction and the third term is randomization with a 
control parameter α. For most cases in the implementation, 

10  and  1,0 . 

The MOFA uses the same equations and idealized rule as for 
FA for optimizing the multiple objectives. In MOFA, a design 
problem with L individual objective functions, nonlinear 
equality and inequality constraints are combined into a single 
composite function by using weighted sum method [31]:  
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where wi are randomly generated non–negative weights that act 
as preferences for optimizing the multi–objectives, so that the 
Pareto optimal front [30], [31] can be approximated correctly. 

The success of nature–inspired optimization algorithms lies 
in how faster the algorithms explore the new possible solutions 
and how efficiently they exploit the better solutions. Although 
MOFA in its simplified form works well in the exploitation, 
there are still some problems in global exploration of the search 
space [33] because of the phenomenon of low accuracy and 
slow convergence rate. If all solutions in the initial phase of the 
algorithm are collected in a small part of search space, the 
algorithm may not find the optimal result and with a high 
probability, it may be trapped in that sub–domain. One can 
consider a large number for solutions to avoid this 
shortcoming, but it causes an increase in the function 
calculations as well as the computational costs and time. So for 
MOFA, there is a need by which exploration and exploitation 
can be enhanced.  

To enhance the performance of MOFA, two features, Lévy–
flight distribution [28] and fitness (cost) value based 
differential evolution mutation strategy [29] to explore search 
space are introduced in the algorithm. Further to exploit the 
search space, the parallelism concept based on multiple 
populations is introduced to validate MOFA performance with 
and without Lévy–flight and mutation strategy. The Lévy flight 
distribution is: 
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Γ(λ) is gamma distribution valid for large steps i.e. for s > 0. 
Throughout the paper, λ = 1.5 is used. In theory, it is required 
that 00 s , but in practice s0 can be as small as 0.1. 

By combining the characteristics of Lévy flights with the 
MOFA, another new algorithm named, Lévy flight multi–
objective Firefly algorithm (LMOFA) can be formulated. For 

LMOFA, the third term in (1) is randomized via Lévy flights. 
The firefly movement equation for LMOFA is [33]: 
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The product means the entry wise multiplications. The 

term )5.0( randsign , where ]1,0[rand  essentially provides a 
random direction, while the random step length is drawn from 
a Lévy distribution L(λ). 

The mutation rate probability t
iMR related to the fitness value 

t
if  of each solution xi and maximum fitness value )( tfMax in 

the population at running iteration index t is: 
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Instead of using the fixed DE mutation operator, this paper 

uses the varying mutation operators at running iteration t: 
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where LB, UB are lower and upper bound on the solutions 
respectively, [0,1]∋2ߚ ,1ߚ are random vectors drawn from 
uniform distribution, and ߟ is positive fixed parameter with 

large values. In order to make mutation operators t
iF1 and t

iF2  

less than unity, the values of 2ߚ ,1ߚ and ߟ are selected carefully. 
In simplest case, 
 

0001.0*11 rand and 0001.0*22 rand           (7) 
 

 maximum number of iterations               (8)* 2 = ߟ
 
where rand1 and rand2 are random numbers between [0,1]. The 
mutation equation used in this paper is: 
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where t
ix  is population at iteration index t,

 
tt

best xx * is the 

current global best solution at iteration index t, r1 and r2 are 
uniformly distributed random integer numbers between 1 to 
problem size. The numbers r1 and r2 are different from running 
index. If mutation strategy is combined with MOFA and 
LMOFA, MOFA with mutation (MOFAM) and LMOFA with 
mutation (LMOFAM) can be formulated. If multiple 
populations (parallelism) are introduced with MOFAM and 
LMOFAM, then other novel algorithms, namely PLMOFA and 
PLMOFAM can be formulated.  

The corresponding pseudo–code for improved MOFA (I–
MOFA) is shown in Fig. 1. Noted that I–MOFA presents the 
pseudo–code for PLMOFAM. 
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Begin 
     /* parameter initialization */ 
             Define objective functions  f1(x),…,fL(x),    x = (x1,…, xd)

T; 
                                                       /* d is dimension of the problem */ 
             Generate initial fireflies of MP populations each of size NP  
             (i = 1, 2,…,MP; and j = 1, 2,…,NP); 
             /* MP is multi–parallel/entire population size and NP is size of 
             sub–populations in MP*/ 
             Define light absorption coefficient γ; 
             For i = 1 : MP 
                For j = 1 : NP 

                  Generate L weights 0lw  so that 1
1




L

l
lw and form a single 

                  objective i.e. light intensity I; 
                  Find the local best among ith population of NP fireflies; 
                End for j 
             End for i 
             Based on fitness value, among MP solutions select globally  
             best solution x*; 
     /* End of parameter initialization */ 
     For i = 1 : N                                    /* N is the Pareto fronts points */ 
        Generate L weights which satisfies (2); 
        While not TC                                 /* TC is termination criterion */ 
            For j = 1 : MP                                                 
                For k = 1 : NP                                          /*all NP fireflies*/ 
                   For m = 1 : k  
                    If j

k
j

m II   

                      Move firefly k towards m via Lévy flights; 
                    End if 
                    /* Mutation */ 
                        Compute mutation rate probability MR; 
                        If (MR < rand (0,1)) 
                          Perform mutation; 
                        End if 
                    /* End of mutation */ 
                    Vary attractiveness with distance r via exp[− γr]; 
                    Evaluate new generated NP solutions of jth population;   
                  Form single optimize objective to update light intensity; 
                    Rank the solutions and find current best Pareto optimal  

                    solution j
mlbestx ,

; 

                   End for m                 
                End for k                                                                  
            End for j 

          Find global best solution x* among the MP lbestx solutions; 

      End while 
      Record x* as a non–dominated solution; 
     End for i 
     Postprocess results and visualization; 
End 

Fig. 1 Pseudo–code for I–MOFA  
 
By removing the concept of parallelism, Fig. 1 represents 

the pseudo–code for LMOFAM, if both the concept of 
parallelism and mutation are omitted from Fig. 1, then it 
represents the pseudo–code for LMOFA, if both the concept 
of parallelism and Lévy flights are omitted the it represents the 
pseudo–code for MOFAM if the concept of only mutation is 
omitted then it represents the pseudo–code for PLMOFA, and 
if the concept of mutation and Lévy flights are omitted then it 
corresponds to the pseudo–code for PMOFAM 

III. FINDING OGRS 

If the spacing between any pair of channels in Golomb ruler 
set is denoted as CS , an individual element i.e. non–negative 
integer location is as IE and the total number of channels as n, 

then the two optimization objectives f1(x) = ruler length (RL) 
and f2(x) = total optical channel bandwidth (TBW) are [9]: 

 
1

1
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i
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where nji ,...,2,1,   with ji   are distinct in (10) and (11). The 
objectives f1(x) and f2(x) are combined into a single composite 
objective f(x). The proposed general pseudo–code for the 
improved MOFA forms with Lévy–flight, fitness value based 
DE mutation strategy and parallelism to find OGRs for WDM 
systems is shown in Fig. 2. 

IV. SIMULATION RESULTS 

This section presents the performance of proposed MOFA 
algorithms and their performance comparison with two existing 
conventional algorithms and two nature–inspired algorithms of 
finding unequal channel spacing. The algorithms have been 
coded and tested in MATLAB language running under 
Windows 7, 64–bit operating system and were run 20 times to 
obtain OGRs. 

A. Simulation Parameters Selection for I–MOFA’s 

To find the optimal sequences, the best parameter values for 
proposed algorithms finally settled are shown in Table I where 
n denotes the number of channels/marks. The parameters 
multi–parallel population size (M–Popsize), Sub–population 
size (S–Popsize), ߟ, and Pareto front points (N) are not required 
by algorithms LMOFA, LMOFAM, and MOFAM, so they are 
shown by a dash line. The maximum number of iterations 
(Maxiter) set for all algorithms is number of marks times 100. 
By introducing parallelism in MOFA and hybridization of 
parallel MOFA with Lévy flights and mutation strategy the 
algorithm finds OGRs in less number of iterations due to which 
the computation time is optimized as there is exploration and 
exploitation of search space. This means that the performance 
of algorithm is enhanced.  

B. Comparison of Proposed Algorithms with Previous 
Existing Algorithms in Terms of Ruler Length and Total 
Optical Channel Bandwidth 

The ruler length and total occupied channel bandwidth for 
different sequences obtained by the proposed improved forms 
of MOFA after 20 executions and their performance 
comparison with EQC, SA, GAs, and MOFA are reported in 
Table II. The applications of EQC and SA are restricted to 
prime powers only, so the ruler length and total occupied 
channel bandwidth for EQC and SA are presented by a dash 
line in Table II [1]. Fig. 3 illustrates the graphical 
representation of Table II. Comparing simulation results 
obtained from the proposed algorithms with the existing 
algorithms, it is noted that there is significant improvement in 
the ruler length and hence the total occupied channel 
bandwidth. This improvement is due to the better accuracy and 
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fast convergence rates illustrated by introducing the concept of 
random walk by Lévy flight distribution, DE mutation strategy 
and multi–population with MOFA. From Table II, it is also 
noted that the algorithms LMOFA and MOFAM can find the 
shortest length rulers up to 15–channels, LMOFAM up to 16–

channels, whereas PLMOFA and PLMOFAM up to 20–
channels efficiently. The maximum numbers of iterations 
required by the algorithms LMOFA, MOFAM, LMOFAM, 
PLMOFA and PLMOFAM for 20–channel Golomb ruler are 
1800, 1600, 1200, 800 and 500 respectively. 

 
TABLE I 

SIMULATION PARAMETERS FOR I–MOFA’S 

Parameter LMOFA LMOFAM MOFAM PLMOFA PLMOFAM 

Multi–parallel population size (M–Popsize) –– –– –– 10 10 

Sub–population size (S–Popsize) –– –– –– 10 10 

Size of entire search space (Popsize) 20 20 20 M–Popsize * S–Popsize M–Popsize * S–Popsize 

Maximum Iteration (Maxiter) n*100 n*100 n*100 n*100 n*100 

 Maxiter 2 * Maxiter * 2 –– –– –– ߟ

Pareto front points (N) –– –– –– 100 100 

α 0.5 0.5 0.5 0.5 0.5 

β 0.2 0.2 0.2 0.2 0.2 

γ 1.0 1.0 1.0 1.0 1.0 

 
 

Begin 
      /* Parameter initialization */ 
           Initialize the number of channels n, upper bound on the ruler length and Pareto fronts point N; 
           Define light absorption coefficient γ; 
           Generate a set of MP integer populations (fireflies) each of size NP integers randomly and each integer NP population corresponding to  
           Golomb ruler to the specified channels;                                       /* Number of integers in firefly is being equal to the number of channels */ 
          For i = 1 : MP 
             For j = 1 : NP 

                Find the local best i
jlbestx , among ith population of NP fireflies by using (2), (10) and (11); 

             End for j 
          End for i 

          Based on fitness value (Light intensity I), among MP lbestx solutions select the globally best solution x*; 

     /* End of parameter initialization */ 
       For i = 1 : N                                                                                                             
           Generate L weights which satisfies (2); 
            While not TC                                                                                                                                                   / * TC is termination criterion */ 
                For j = 1 : MP                                                 
                   For k = 1 : NP                                                                                                                                           /*All NP fireflies*/ 
                        For m = 1 : k  
   A:                   If j

k
j

m II   

                            Move firefly k towards m in d-dimension via Lévy flights; 
                          End if 
                          /* Mutation */ 
                              Based upon the mutation rate probability MR, perform mutation; 
                          /* End of mutation */ 
                            Check Golombness of updated solutions; 
                            If Golombness is satisfied 
                                Retain that solution and then go to B; 
                            Else 
                                Retain the previous generated solution into the parameter initialization step and then go to A; 
                         End if  
     B:                 Vary attractiveness with distance r via exp[− γr]; 
                         Evaluate new generated NP solutions of jth population and form a single optimize objective to update light intensity; 
                         Rank the solutions and find current best Pareto optimal solution j

mlbestx ,
; 

                      End for m                 
                   End for k                                                                  
                End for j 

             Find global best solution x* among the MP lbestx solutions; 

            End while 
          Record x* as a non–dominated solution; 
       End for i 
       Postprocess results and visualization; 
End 

Fig. 2 General Pseudo–code for I–MOFA to find OGRs for optical WDM systems 
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TABLE II 
COMPARISON OF PROPOSED ALGORITHMS WITH EXISTING CONVENTIONAL AND NATURE–INSPIRED ALGORITHMS IN TERMS OF RULER LENGTH AND TOTAL 

BANDWIDTH 

n 
EQC [1], [4] SA [1], [4] GAs [9] 

MOFA [22], 
[23] 

LMOFA MOFAM LMOFAM PLMOFA PLMOFAM 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

RL 
TBW 
(Hz) 

3 6 10 6 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 

4 15 28 15 28 
6 
7 

11 
6 
7 

11 
6 
7 

11 
6 
7 

11 
6 
7 

11 
6 
7 

11 6 11 

5 — — — — 
12 
13 

23 
25 
29 

11 
12 
13 

23 
24 
25 

11 
12 
13 

23 
24 

11 
12 

23 
24 

11 
12 
13 

23 
24 

11 
12 
13 

23 
25 

11 
12 

23 
24 

6 45 140 20 60 
17 
18 
21 

42 
44 
45 

17 
18 

42 
44 

17 
18 

42 
44 

17 
18 

42 
44 

17 
18 

42 
44 

17 
18 

42 
44 

17 44 

7 — — — — 
27 
29 
30 

73 
79 
80 
83 

25 
26 
27 

73 
77 
80 
81 

25 
27 
28 

73 
74 
77 

25 
26 
27 

73 
77 
80 
81 

25 
26 
27 
28 

73 
74 
77 

25 
28 

74 
77 
81 
90 

25 
26 
27 

73 
77 

8 91 378 49 189 
35 
41 
42 

126 
128 
133 

34 
39 

113 
117 

34 
39 

113 
117 

34 
39 

113 
117 

34 
39 

113 
117 

34 
39 

113 
117 

34 
39 

113 
117 

9 — — — — 

52 
56 
59 
61 
63 
65 

192 
193 
196 
203 
225 

44 
49 

206 
208 

44 
49 

206 
44 
49 

206 
44 
47 
49 

185 
206 

44 206 44 206 

10 — — — — 
75 
76 

283 
287 
301 

55 249 55 249 55 249 55 249 55 249 55 249 

11 — — — — 
94 
96 

395 
456 

72 391 72 386 
72 

103
378 
391 

72 
103

378 
386 
391 

72 386 72 386 

12 231 1441 132 682 
123 
128 
137 

532 
581 
660 

85 515 85 503 85 503 85 503 85 503 85 503 

13 — — — — 
203 
241 

1015 
1048 

106
725 
744 

106
111

675 
725 

106
111

673 
720 

106 660 106 660 106 660 

14 325 2340 286 1820 
206 
228 
230 

1172 
1177 
1285 

169
206

991 
1001 

206 991 169 1001 127 924 127 924 127 924 

15 — — — — 
275 
298 

1634 
1653 

260 1554 151 1047 151 1047 151 1047 151 1047 151 1047 

16 — — — — 316 1985 283 1804 283 1804 283 1804 177 1298 177 1298 177 1298 

17 — — — — 355 2205 355 2205 354 2208 354 2208 369 2201 199 1661 199 1661 

18 561 5203 493 5100 
427 
463 

2599 
3079 

463 2599 362 2912 445 2566 
445
427

2566 
3079 

216 1894 216 1894 

19 — — — — 
567 
597 

3432 
5067 

567 3432 467 3337 
475
467

3408 
3337 

467 3337 246 2225 246 2225 

20 703 7163 703 6460 

615 
673 
680 
691 

4660 
4826 
4905 
4941 

649 4517 615 4660 615 4660 578 4306 283 2794 283 2794 

 

C. Comparison of Proposed Algorithms in Terms of 
Computational Time 

Finding OGRs for higher order marks by exhaustive search 
algorithms are very time consuming, which means that it takes 
several hours, months, and even years of calculation on the 
network of several thousand computers [6], [7], [34], [35]. In 
[17], it is identified that to find Golomb ruler sequences from 
heuristic based exhaustive search algorithm, the times varied 
from 0.035 seconds to 6 weeks for 5 to 13–marks ruler, 
whereas by non–heuristic exhaustive search algorithms took 
approximately 12.57 minutes for 10–marks, 2.28 years for 12–
marks, 2.07e+04 years for 14–marks, 3.92e+09 years for 16–
marks, 1.61e+15 years for 18–marks and 9.36e+20 years for 

20–marks ruler. In [20], it is reported that CPU time taken by 
Tabu search algorithm is around 0.1 second for 5–marks, 720 
seconds for 10–marks, 960 seconds for 11–marks, 1913 
seconds for 12–marks and 2516 seconds for 13–marks. The 
OGRs realized by hybrid GA [20] took around 5 hours for 11–
marks, 8 hours for 12–marks, and 11 hours for 13–marks. The 
OGRs realized by the exhaustive search algorithms [15] for 14 
and 16–marks, took nearly 1 hour and 100 hours respectively, 
while 17, 18 and 19–marks realized in [34], took around 1440, 
8600 and 36200 CPU hours (nearly seven months) 
respectively on a Sun Sparc Classic workstation. Also, the 
near–OGRs realized up to 20–marks by GAs, the maximum 
execution time was approximately 31 hours, whereas for 
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MOFA [23] the maximum execution time was around 27 hours. 
 

TABLE III 
COMPARISON OF AVERAGE CPU TIME TAKEN BY PROPOSED ALGORITHMS WITH GAS, AND MOFA 

n 
GAs [9] MOFA [23] LMOFA MOFAM  LMOFAM PLMOFA PLMOFAM 
Average  

CPU time (Sec.) 
Average  

CPU time (Sec.) 
Average 

CPU time (Sec.) 
Average 

CPU time (Sec.) 
Average  

CPU time (Sec.) 
Average  

CPU time (Sec.) 
Average  

CPU time (Sec.) 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

5 0.021 0.011 0.001 0.001 0.001 0.001 0.000 

6 0.780 0.4398 0.1238 0.1088 0.1013 0.0211 0.0201 

7 1.120 0.8520 0.4899 0.3895 0.1870 0.0478 0.0479 

8 1.241 1.0227 0.7441 0.7321 0.2379 0.0693 0.0601 

9 1.711 1.4890 1.9872 1.5680 1.3750 0.0886 0.0798 

10 5.499e+01 5.211e+01 3.149e+01 3.138e+01 3.111e+01 0.5271 0.4108 

11 7.200e+02 6.710e+02 4.766e+02 4.767e+02 4.645e+02 1.6976 1.4332 

12 8.602e+02 7.890e+02 5.658e+02 5.652e+02 5.648e+02 9.456 4.8891 

13 1.070e+03 1.010e+03 8.750e+02 8.751e+02 8.436e+02 3.451e+01 3.224e+01 

14 1.028e+03 1.019e+03 1.014e+03 1.012e+03 0.981e+03 5.529e+01 4.993e+01 

15 1.440e+03 1.270e+03 1.166e+03 1.165e+03 1.090e+03 8.334e+01 7.987e+01 

16 1.680e+03 1.439e+03 1.342e+03 1.342e+03 1.158e+03 4.881e+02 3.778e+02 

17 5.048e+04 4.041e+03 3.460e+03 3.455e+03 3.320e+03 6.678e+02 5.899e+02 

18 6.840e+04 5.875e+04 4.075e+04 4.076e+04 3.880e+04 9.997e+02 8.975e+02 

19 8.280e+04 7.132e+04 6.687e+04 6.688e+04 6.390e+04 4.897e+03 3.597e+03 

20 1.12428e+05 9.876e+04 7.335e+04 7.432e+04 7.110e+04 8.022e+03 7.889e+03 

 
Table III reports the average CPU time taken after 20 

executions by the proposed algorithms to find OGRs up to 20–
marks and their comparison with average CPU time taken by 
GAs, and MOFA to find OGRs for optical WDM systems. 
The graphical representation of Table III is shown in Fig. 4. 
For proposed algorithms, the average CPU time varied from 
0.000 second for 3–marks ruler to approximately 20 hours (for 
LMOFA) for 20–marks ruler. By introducing Lévy flight, 
mutation strategies and multiple populations with MOFA, 
average CPU time is reduced to approximately 2.2 hours for 
PLMOFAM. This represents the improvement achieved by the 
modified forms of MOFA to find OGR sequences for WDM 
systems. Thus, algorithm PLMOFAM outperforms other 
algorithms. 
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(b) 

Fig. 3 Comparison of the Proposed Algorithms with Existing 
algorithms in Terms of (a) Ruler Length, and (b) Total Bandwidth 

V. CONCLUSIONS AND FUTURE WORK 

Finding OGR sequences is an extremely challenging 
optimization problem. In this paper, WDM channel allocation 
algorithm by considering the concept of OGRs is presented. 
The application of improved forms of MOFA to solve OGRs 
problem is presented. The main technical contribution of this 
paper was to enhance the performance of MOFA by 
hybridization of MOFA with Lévy flight and mutation. To 
explore the search space for MOFA, the concept of multi–
population was used. The proposed algorithms have been 
validated and compared with other existing algorithms to find 
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OGRs. Simulations and comparison show that the modified 
forms are superior to the existing algorithms. From 
preliminary results, it is concluded that for large order marks, 
algorithm PLMOFAM outperforms the other presented 
algorithms, as it requires less numbers of iterations and 
computation time to find OGRs. The outstanding performance 
of PLMOFAM can be very useful for the future in different 
multi–objective optimization design applications. 
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Fig. 4 Comparison of the Proposed Algorithms with Existing 
algorithms in Terms of Average CPU Time 
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