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Abstract—The influence of canned cycles and cutting parameters 

on hole quality in cryogenic drilling has been investigated 
experimentally and analytically. A three-level, three-parameter 
experiment was conducted by using the design-of-experiment 
methodology. The three levels of independent input parameters were 
the following: for canned cycles—a chip-breaking canned cycle 
(G73), a spot drilling canned cycle (G81), and a deep hole canned 
cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting 
speeds—60, 75, and 100 m/min. The selected work and tool materials 
were aluminum 6061-6T and high-speed steel (HSS), respectively. 
For cryogenic cooling, liquid nitrogen (LN2) was used and was 
applied externally. The measured output parameters were the three 
widely used quality characteristics of drilled holes—diameter error, 
circularity, and surface roughness. Pareto ANOVA was applied for 
analyzing the results. The findings revealed that the canned cycle has 
a significant effect on diameter error (contribution ratio 44.09%) and 
small effects on circularity and surface finish (contribution ratio 
7.25% and 6.60%, respectively). The best results for the dimensional 
accuracy and surface roughness were achieved by G81. G73 
produced the best circularity results; however, for dimensional 
accuracy, it was the worst level. 
 

Keywords—Circularity, diameter error, drilling canned cycle, 
Pareto ANOVA, surface roughness. 

I. INTRODUCTION 

N the material cutting process, large amounts of heat are 
generated due to plastic deformation at the shear plane and 

to overcome friction at the tool-chip and tool-work interfaces. 
The heat generated elevates the temperature of the tools, 
workpieces, and chips, and the heightened temperature 
strongly influences tool wear, tool life, the dimensional 
accuracy and surface integrity of a machine surface, and the 
chip formation mechanism. Historically, cutting fluids have 
been applied extensively in machining operations to reduce 
the adverse effects of excessive heat. The most common 
practice is flood machining in which a large quantity of 
cutting fluid is applied to the cutting tool and workpiece 
interface. However, the excessive amount of cutting fluid used 
in flood machining is an area of concern with respect to 
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workers’ health and wider environmental issues that are 
central to high disposal costs for such fluid. Consequently, 
alternative methods such as machining with Minimum 
Quantity Lubrication (MQL) and cryogenic machining have 
been proposed.  

In recent years, cryogenic machining has attracted the 
interest of the machining community for its potential 
environmental and economic benefits. Liquid nitrogen (LN2) 
is the most commonly used cryogenic coolant because it is 
nontoxic, clean, and safe, and it has no disposal cost. In 
addition to its environmental benefits, cryogenic machining 
improves machining performance in terms of tool wear/tool 
life [1]-[3], dimensional accuracy [4], [5], and surface quality 
[6]-[8]. It has been reported that cryogenic machining can 
enhance the functional performance of machined components 
through improving its major surface integrity characteristics 
[9]. 

A number of papers have been published investigating the 
performance of cryogenic machining. A detailed treatment of 
the topic can be found in [10]-[12]. Most of the published 
literature refers to cryogenic turning; only a limited number of 
studies have been carried out on cryogenic drilling [13]-[19], 
although drilling is the most widely used of all machining 
processes (comprising about one third of all material-
machining operations) [20]. This research is an attempt to 
close this gap by examining the performance of cryogenic 
drilling operations to improve three-hole quality 
characteristics. 

Several factors influence drill hole quality; the most 
obvious ones are the cutting parameters—feed rate and cutting 
speed. Cryogenic cooling is characterized by rapid cooling 
through the localized application of cutting fluid; this is 
greatly influenced by the drilling canned cycle that may have 
significant effects on drill hole quality. The objective of this 
research is to explore this possibility in detail. 

II. DRILLING CANNED CYCLE 

Canned cycles are an integral part of modern CNC 
machining. It is a convenient way of performing a series of 
operations initiated by a single code, thus reducing the number 
of blocks in a program and the memory space required for 
storing the program, and saving program development time 
and reducing the potential for programmers' errors. In CNC 
drilling, canned cycles are widely used, and the most 
frequently used drilling canned cycles are the following: a spot 
drilling canned cycle (G81), a deep hole canned cycle (G83), 
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spindle power and a maximum spindle speed of 4,500 rpm. 
Liquid nitrogen (LN2) was used as coolant, which was 
directed at the drilling operation through a nozzle. The details 
of input parameters (canned cycles, feed rate, and cutting 
speed) are given in Table II. 

 
TABLE II 

INPUT VARIABLES 

Input Parameters Symbol Unit Level 0 Level 1 Level 2 

Canned cycle A  G73 G81 G83 
Feed rate B mm/rev 0.2 0.3 0.4

Cutting speed C m/min 60 75 100 

 
The precision measurement data for diameter error and 

circularity were obtained by a general purpose coordinate 
measuring machine (CMM) (Discovery Model D-8 
manufactured by Sheffield, U.K.). Eight points were probed to 
determine the diameter in the horizontal plane, with the 
diameter of each hole being checked at 1 mm height 
increments. The circularity data were obtained from the CMM 
applying a similar probing scheme. The surface roughness 
parameter arithmetic average (Ra) for each hole was measured 
by a surface-measuring instrument (Surftest SJ-201P, 
manufactured by Mitutoyo, Japan). For each hole, three 
surface roughness measurements were taken parallel to the 
hole axis at three axial positions, excluding entry and exit 
positions. The drilling thrust force was measured by a rotating 
cutting force dynamometer (type 9125A, manufactured by 
Kistler, Switzerland). A K-type thermocouple was attached to 
the workpiece to monitor the workpiece temperature 
throughout the experiment. 

V.  RESULTS AND ANALYSIS 

A. Diameter Error 

The Pareto ANOVA for diameter errors summarized in Fig. 
2 shows that parameter A (canned cycle) has the most 
significant effect on diameter error, with a contribution ratio 
of P = 44.09%, followed by C (cutting speed), P = 24.62%, 
and B (feed rate), P = 13.63%. The interaction effects are 
small. The total contribution of the main effects is 
approximately 82% compared with the 18% total contribution 
of the interaction effects, thus making it easier to optimize the 
diameter error through the selection of input parameters, 
especially the canned cycle. 

The Pareto ANOVA (Fig. 2) shows that parameter A 
(canned cycle) has the most significant effect on dimeter error. 
Considering the interaction between canned cycle and cutting 
speed (A×C), a two-way table was developed for selecting the 
optimum combinations of parameters A and C. The two-way 
tables are not included in this paper due to space constraints. 
The two-way table of A×C interaction showed that A2C2 
yields the lowest diameter error. The optimum level of the 
remaining parameter feed rate (B) was chosen as B0 from the 
Pareto ANOVA (Fig. 2). Overall, the best combination for 
achieving the lowest diameter error was A2B0C2, i.e., high 
level of canned cycle (G83), low fed rate (0.2 mm/rev), and 

high cutting speed (100 m/min).  
The variation of average diameter error under three input 

parameters is shown in Fig. 3. It shows that the canned cycle 
has the greatest influence on diameter error (largest difference 
between maximum and minimum values). G83 produced a 
slightly better diameter error than G81. Compared to G83 and 
G81, G73 produced diameter errors that were two times larger. 
Fig. 3 also shows that with the increase of feed rate, the 
diameter error increase, whereas with the increase of cutting 
speed, the diameter error initially increases and then decreases 
to the minimum at a high cutting speed.  

B. Circularity 

The Pareto ANOVA for circularity summarized in Fig. 4 
illustrates that the most significant parameter affecting the 
circularity was the interaction between feed rate and cutting 
speed (B×C), (P = 26.30%), followed by cutting speed (C) (P 
= 24.20%) and feed rate (B) (P = 19.50%). The effect of a 
canned cycle (A) was small (P = 7.25%). The total 
contribution of the main effects was approximately 51%, 
compared to the total 49% contribution of the interaction 
effects, thus making it difficult to optimize the circularity error 
through the selection of input parameters. 

The Pareto ANOVA (Fig. 4) shows that the interaction 
between feed rate and cutting speed (B×C) has the most 
significant effect on circularity. Therefore, a two-way table 
was developed for selecting the optimum combinations of 
parameters B and C. The two-way table of B×C interaction 
showed that B1C1 yields the lowest circularity. The optimum 
level of the remaining parameter canned cycle (A) was chosen 
as A0 from the Pareto ANOVA (Fig. 4). Overall, the best 
combination for achieving the lowest circularity was A0B1C1, 
i.e., low level of canned cycle (G73), medium feed rate (0.3 
mm/rev), and medium cutting speed (75 m/min).  

The variation in average circularity under three input 
parameters is shown in Fig. 5. It shows that compared to feed 
rate and cutting speed, the canned cycle has relatively small 
influence on circularity. G73 produced the best circularity, 
followed by G81 and G83. Compared to G73, G83 produced 
circularity that was two times larger. Fig. 5 also shows that the 
best circularity can be achieved at a medium feed rate and a 
medium cutting speed, whereas a high feed rate and a low 
cutting speed produce the worst circularity. 

C. Surface Roughness 

The Pareto ANOVA for surface roughness summarized in 
Fig. 6 demonstrates that the most significant parameter 
affecting the surface roughness was the interaction between 
feed rate and cutting speed (B×C), (P = 21.30% and 17.53%), 
followed by cutting speed (C) (P = 16.70%). The effects of a 
canned cycle (A) and a feed rate (B) were small, P = 6.60% 
and 6.06%, respectively. The total contribution of the main 
effects was approximately 70%, compared to the total 30% 
contribution of the interaction effects, thus making it very 
difficult to optimize the surface roughness through the 
selection of input parameters. 
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Fig. 7 Average variation of surface roughness under three input  
 

Further analysis of hole size variation for the three canned 
cycle is presented in Table III. It shows that in all three cases, 
the holes were oversized, which is common in drilling 
operations. Galloway [23] concluded that it is caused by the 
variation in relative lip heights of the drill. Drill hole oversize 
also depends on the work material [24]. Other possible reasons 
include a runout of the drill when attached to the machine, 
thermal distortion, a nonsymmetric point angle, and a runout 
of the chisel edge [25]. For an 11.7 mm diameter hole 
produced by drilling, the anticipated oversizing is 80 microns 
[26]. All three canned cycles produced holes within the 
expected range; however, compared to G81 and G83, G73 
produced (diameter) errors that were two times larger. 

 
TABLE III 

COMPARISON OF SIZE VARIATION 

Size Characteristics Unit G73 G81 G83 

Nominal diameter mm 11.700 11.700 11.700 

Measured mean diameter mm 11.754 11.728 11.725 

Diameter error m 54.3 28.1 24.6 

6 × standard deviation m 158.5 104.1 80.9 

Process capability tolerance IT 11.931 11.018 10.470 

 
The precision of a manufacturing process is often expressed 

by the international tolerance (IT) grade [27]. The smaller the 
grade of IT number, the higher the precision of the process. 
The IT grades of traditional machining processes used for 
making holes varies between IT05 (for fine cylindrical 
grinding) and IT13 (for drilling) [28]. The following formula 
[28], [29], based on the tolerance standards for cylindrical fits, 
was used for calculating the IT grade in which process 
capability tolerance was replaced by six times the standard 
deviation of measured hole size variation data. 

 

                  (1) 
 

where PC is the process capability tolerance (mm), X is the 
manufactured dimension (mm), and IT is the IT grade number.  

The expected IT grade for a drilling operation is between 
IT10 and IT13 [28]. All three canned cycles produced 
diameter errors within the expected range. G83 produced the 
best results in terms of both diameter error and process 
capability tolerance, followed by G81 and G73.  

 

Fig. 8 Change of diameter error along hole axis 
 

Changes in average diameter error and circularity along the 
axis for different canned cycles are illustrated in Figs. 8 and 9, 
respectively. Fig. 8 shows that G83 produced the least shape 
variation flowed by G81 and G73. Examination of Fig. 8 also 
reveals that the hole dimeter gradually increased to a peak 
value and then decreased after passing half of the drilling 
depth producing a barrel shape. This type of shape variation is 
typical in most drilling operations, as reported in the literature 
[5], [30], [31]. This is probably caused by the thermal 
expansion of the drill bit during penetration and subsequent 
cooling when it reaches the opposite end. It is worth noting 
that there is no noticeable change in the shape of the holes due 
to different canned cycles, suggesting that the oversizing and 
the shape variation occur during drill penetration and not 
during drill withdrawal. 
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coolant is applied externally, achieving the required 
dimensional accuracy will be a major challenge due to the 
rapid and uncontrolled cooling of the workpiece. Future work 
is required for developing a predictive model needed to 
overcome this challenge. 
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