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 
Abstract—Prediction of machining process capability in the 

design stage plays a key role to reach the precision design and 
manufacturing of mechanical products. Inaccuracies in machining 
process lead to errors in position and orientation of machined features 
on the part, and strongly affect the process capability in the final 
quality of the product. In this paper, an efficient systematic approach 
is given to investigate the machining errors to predict the 
manufacturing errors of the parts and capability prediction of 
corresponding machining processes. A mathematical formulation of 
fixture locators modeling is presented to establish the relationship 
between the part errors and the related sources. Based on this method, 
the final machining errors of the part can be accurately estimated by 
relating them to the combined dimensional and geometric tolerances 
of the workpiece – fixture system. This method is developed for 
uncertainty analysis based on the Worst Case and statistical 
approaches. The application of the presented method is illustrated 
through presenting an example and the computational results are 
compared with the Monte Carlo simulation results. 
 

Keywords—Process capability, machining error, dimensional and 
geometrical tolerances, uncertainty analysis. 

I. INTRODUCTION 

ESIGN for manufacturing (DFM) is the basis for 
concurrent engineering (CE) to provide guidance to the 

design unit in improving of the product quality and to reduce 
manufacturing and assembly costs. Applying DFM in early 
stages of precision product design is necessary and significant. 
One aspect of the precision DFM is the error analysis of the 
manufacturing process. In manufacturing processes, especially 
the CNC machining, fixtures are the effective cause of the 
error propagation on features of the produced part. Fixture 
design is a complex problem that involves consideration of 
many operational requirements and has important connection 
with product quality and manufacturing cost. Fixtures are 
necessary elements of production processes as they are used to 
hold workpieces during most of manufacturing, inspection, 
and assembly operations [1]. Cecil et al. introduced a three-
phase methodology for the fixture design activity has been 
developed [2]. The three phases include predesign analysis, 
functional analysis, and productivity improvement. The design 
of fixtures is an extremely complex process that requires the 
experiences of the human designers and for a given 
workpiece, multiple solutions may exist. Subramaniam et al. 
presented a multi-agent fixture design system which harnesses 
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the advantages of genetic algorithms and neural networks. The 
presented system attempts to capture the related domain 
knowledge and uses it to produce acceptable solutions 
efficiently [3].  

When a workpiece is located on a fixture for machining or 
assembly operations, errors from several sources (e.g. setup 
errors and manufacturing errors such as machine vibration, 
tool-path errors, tool wear and tool deflection) affect the 
datum and target features on workpiece. Inaccuracies in 
workpiece location lead to errors in position and orientation of 
machined features on the workpiece, and thus, strongly affect 
the assemblability and the quality of the product. Therefore, a 
fixture must accurately locate a workpiece in a specific 
position and orientation with respect to a cutting tool or 
measuring device, or with respect to another component, such 
as in assembly processes (e.g. in a welding process). 

Many researchers have worked on the effects of locating 
errors on the product quality with the aim of proposing more 
precise methods for evaluating these effects. Asada and By 
developed a kinematic model based on the full-rank Jacobian 
matrix of the constraint equations as a criterion that can be 
used to analyze the fixture layout and deterministic location 
scheme [4]. Rong and Bai considered the dependence of 
machining errors and operations in a tolerance analysis 
approach to estimate the machining errors in terms of linear 
and angular dimensions of a workpiece under a fixture design 
[5]. Choudhuri and DeMeter presented a model that relates 
datum establishment error to locator geometric variability [6]. 
The proposed model is limited to dimensional and profile 
tolerances in linear machined features that are bounded by 
planar workpiece surfaces. Rong et al. presented a locating 
error analysis approach for set-up planning and fixture design 
that included three techniques; a fixturing coordination system 
was defined to simulate the actual locating situation, a 
vectorial tolerance zone definition was explored and a locating 
error evaluation algorithm was developed with sensitivity 
analysis functions [7]. Zhang et al. presented an analytical set-
up planning approach with three techniques; an extended 
graph to describe a feature and tolerance relationship graph 
and a datum and machining feature relationship graph, seven 
set-up planning principles to minimize machining error stack-
up under a true positioning GD&T scheme; and tolerance 
decomposition models to partition a tolerance into 
interoperable machining errors [8]. Sangnui and Peters 
developed a mathematical model based on the Newton-
Raphson technique to estimate the impact of component 
irregularities at the locating points on the location and 
orientation of a workpiece with cylindrical components [9]. 
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                                                       (2)                                                                                       
 

Let ro be the position vector of the center of the locator i 
(see Fig. 1). The radius of the locator i at nominal and actual 
conditions are ࢒࢘	and, ࢒࢘ ൅  respectively. The locating error ࢒࢘ࢾ
 due to manufacturing sources as the manufacturing error (࢒ࢾ)
of locator ࢒࢘ࢾ and the manufacturing error of workpiece ࢓࢘ࢾ 
in at ith locator position can be modeled as; 

 

                                                          (3)                                                                                                                           
 
Therefore, the position of contact point at actual condition 
࢖࢒࢔࢘)
ᇱ ) can be expressed as 

 

                                                               (4) 
 
where the orientated unit normal vector (࢔ᇱ) can be 
determined as 
 

                                                                              (5)                                                                             
 
where n is the unit normal vector of the nominal tangent plane 
at the nominal contact point and ષ is an orthogonal rotation 
matrix that can be expressed as 
 

                                                                                                (6) 
 
 are the rotation components of the located ߛ and	ߚ	,ߙ
workpiece around x-, y-, and z- axes, respectively.  

The ࢖࢘ᇱ  is the position vector of any point existing in the 
actual nominal tangent plane that can be expressed based on 
the position of contact point at nominal condition (rnlp) as; 

 

                                                                       (7) 
 
 where	ࢿ is the pure small translation vector of the workpiece 
due to manufacturing errors. 

III. MATRIX-BASED MODELING OF MACHINING ERRORS 

The tangent plane equation at the actual situation (1) can be 
expressed as an implicit set of equations (Ψ௜ ൌ 0 where 
݅ ൌ 1,2, … ,6 or ࢸ ൌ 0) for all six locators. This equation system 
is appropriate to describe the small translations and the small 
rotations of the located workpiece on the fixture due to 
locating errors. The implicit equation system of the tangent 
plane at the nominal situation in general form can be 
expressed as; 

 
,ࢄሺࢸ ሻࡸ ൌ 0                                                                           (8) 

 
In a similar way, the implicit equation system of tangent 
planes at the actual situation in general form can be written as; 

ࢄሺࢸ ൅ ,ࢄࢾ ࡸ ൅ ሻࡸࢾ ൌ 0                                                        (9) 
 
where	ࢄࢾ and ࡸࢾ are the machining error and the locating 
error on the ith locator in the fixture layout, respectively.  

Solving for the machining error in the implicit equation 
system of tangent planes at the actual situation would require a 
nonlinear equation solver. For linear analysis, the equation 
system can be linearized by the first order Taylor’s series 
expansion. The linearized equation system can be written as; 

 

                                                (10) 
 
This equation can be written in matrix form as; 
 

                                                        (11) 
 

To develop a general relationship between the machining 
error and the locating errors (that is called assembly function) 
in the explicit form, the equation system can be expressed as; 

 

                                                        (12) 
 
where [S] is the sensitivity matrix expressed as; 
 

                                                                 (13) 
 
[A] and [B] matrices can be calculated as; 

 

                         (14) 
 
where ݔ௝ for ݆ ൌ 1 to 6 are ݔ, ,ݕ ,ݖ ,ߙ ,ߚ  .respectively ,ߛ
 

                         (15) 

 
ሾ∆ܮሿ and ሾ∆ܺሿ matrices are the locating error matrix and the 
machining error matrix, respectively.  

By solving (12), the small translation vector ࢿ	and the small 
rotation vector ߱	of the located workpiece can be obtained 
based on the computed machining error matrix. Using these 
vectors, the actual position of any point on the located 
workpiece features related to its nominal position can be 
expressed as; 

 

                                                                     (16) 

 
where rnp and rap are the nominal and the actual position 
vectors of a point on the located workpiece, respectively. 

IV. ERROR ANALYSIS 

In general form, the assembly function (12) can be written 
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