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The power transmission between the DFIG and the grid is 
achieved by two paths; the stator power where the stator is 
connected directly to the grid and the rotor power where the 
rotor is connected to the grid via RSC to convert the rotor 
frequency power to dc power then GSC converts the dc power 
to the ac system of the grid. The equivalent circuit of the 
DFIG in the d-q reference frame is shown in Fig. 3. 

The dynamic model of the DFIG can be described as [14]; 
 

ௗ௦ݒ ൌ ܴ௦݅ௗ௦ ൅
ௗఒ೏ೞ
ௗ௧

		െ ߱௘ߣqs            (1) 

 

௤௦ݒ ൌ ܴ௦݅௤௦ ൅
ௗఒ೜ೞ
ௗ௧

	൅ ߱௘ߣௗ௦           (2) 

 

ௗ௥ݒ ൌ ܴ௥݅ௗ௥ ൅
ௗఒ೏ೝ
ௗ௧

		െ ሺ߱௘ െ ߱௥ሻߣqr        (3) 

 

௤௥ݒ ൌ ܴ௥݅௤௥ ൅
ௗఒ೜ೝ
ௗ௧

	൅ ሺ߱௘ െ ߱௥ሻߣௗ௥           (4) 

 
ௗ௦ߣ ൌ ሺܮ௟௦ ൅ ௠ሻ݅ௗ௦ܮ ൅  ௠݅ௗ௥            (5)ܮ

 
௤௦ߣ ൌ ሺܮ௟௦ ൅ ௠ሻ݅௤௦ܮ ൅  ௠݅௤௥           (6)ܮ

 
ௗ௥ߣ ൌ ௠݅ௗ௦ܮ ൅ ሺܮ௟௥ ൅  ௠ሻ݅ௗ௥            (7)ܮ

 
௤௥ߣ ൌ ௠݅௤௦ܮ ൅ ሺܮ௟௥ ൅  ௠ሻ݅௤௥            (8)ܮ

 
where ܴ௦, ܴ௥: Stator and rotor resistances; ܮ௟௦, ܮ௟௥: Stator and 
rotor leakage inductances; ܮ௠; magnetizing inductance; ݅ௗ௦ , 
݅௤௦: The d-q stator currents; ݅ௗ௥ , ݅௤௥: The d-q rotor currents; 
߱௘: The supply angular frequency; ߱௥: The rotor angular 
frequency; ߣௗ௤௦: The d-q stator flux linkage; ߣௗ௤௥: d-q rotor 
flux linkage. 

The main control objectives of the conventional DFIG 
include regulation of stator active power and reactive power, 
DC link voltage. The control of the stator active and reactive 
power is achieved via RSC and the control of DC link voltage 
is fulfilled via GSC.  

A. RSC Control 

As presented in [15]. The field oriented control approach is 
used to have decoupled control on the stator active and 
reactive power according to; 

 

௦ܲ 	 ൌ 	െ
ଷ

ଶ	

௅೘
௅೘ା௅೗ೞ

	 ௦ܸ݅௤௥               (9) 

 

ܳ௦ 	ൌ 	
ଷ

ଶ	
		

௏ೞ
௅೘ା௅೗ೞ

ሺ	ܮ௠݅ௗ௥ െ
௏ೞ
ఠ೐
ሻ              (10) 

 

The inner control loop of the RSC regulates the rotor 
current and the rotor current commands are generated from the 
stator power control. 

B. GSC Control 

The target of GSC control is to keep the DC link voltage 
constant. The dynamics of the DC link capacitor is given as 

 

ܥ ௗܸ௖
ௗ௏೏೎
ௗ௧

ൌ െ ௥ܲ െ ௚ܲ                (11) 

 
where P୰ is the power delivered to the rotor; P୥ is the power 
delivered to the grid. The control of the DC link voltage Vୢୡ is 
achieved through regulating P୥. 

III. LOW VOLTAGE RIDE THROUGH TECHNIQUES 

Several techniques have been proposed to achieve the target 
of LVRT for wind turbines since 2003. These techniques can 
be divided into two main categories; (a) Adding external 
hardware to the conventional DFIG, (b) Using different 
control scheme with conventional DFIG. 

a) Adding External Hardware 

1) Crowbar 

1.1) Crowbar Resistance Only 

The first proposed solution to add LVRT capability to the 
DFIG is using crowbar resistance. In this solution, a set of 
three resistors are activated to be connected to the rotor upon 
the fault occurrence to bypass the RSC furthermore the gating 
signals for RSC and GSC are turned off. However, the control 
of the active and reactive powers is lost during the crowbar 
operation and the DFIG operates as a squirrel cage induction 
generator which absorbs reactive power from the grid leading 
to worst voltage dip situation [16]-[19]. The position of the 
crowbar resistance is shown in Fig. 4 [17]. 

 

 

Fig. 4 DFIG with crowbar resistance 
 

To improve the performance of the crowbar several 
modifications have been added as follows; 

1.2) Using R-L Circuit 

In this technique, R-L circuit is added to the crowbar as 
shown in Fig. 5 [20]. Using this method splits the rotor current 
during fault into two paths; one goes to the crowbar resistance 
and the other goes to the rotor windings through the R-L 
impedance. It is clear that by using this method the 
disconnection of the RSC during fault is avoided. 

1.3) Using Series Dynamic Resistor: 

In this technique, a combined converter protection is used 
based on the proposed Series Dynamic Resistor (SDR) and 
conventional crowbar. The position of the series resistance is 
shown in Fig. 6 [21]. The purpose of an SDR is to avoid the 
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frequent use of crowbar short-circuit, to maximize the 
operation time of the RSC, and to reduce torque fluctuations 
during protection operation [21]. 

 

 
Fig. 5 The crowbar with R-L impedance 

 

 

Fig. 6 The crowbar with series dynamic resistance 

1.4) Time Controlled Crowbar 

In this technique, the timer action crowbar is activated when 
the magnitude of the rotor current exceeds a threshold value 
set for the stated maximum IGBT pulse current of 2.0 pu. The 
crowbar then remains engaged for a fixed time. This method 
can divert transient rotor over currents, swiftly restore active 
and reactive power control, and provide local voltage support 
by delivering reactive power to the network [18]. 

1.5) Static Synchronous Compensator (STATCOM) 

Another solution is proposed to improve the reactive power 
absorption of the crowbar, in this solution a STATCOM is 
connected at the bus where the wind turbine is connected to 
the power network as shown in Fig. 7 [22]. The STATCOM is 
applied in order to provide steady state voltage regulation and 
improve the short-term transient voltage stability. 

 
 

2) Dynamic Voltage Restorer (DVR) 

Another solution for adding LVRT capability for DFIG is 
using DVR in series with the DFIG to compensate the low 
voltage of the grid [23]-[25]. As shown in Fig. 8, the DVR 
consists of a battery, a three phase inverter, a filter and an 
injection transformer. The DVR has a great advantage of 
enabling DFIG to work in almost normal condition under 
symmetrical and asymmetrical faults. The disadvantages of 
DVR are its need to an external DC source and its relatively 
high cost. 
 

 

Fig. 7 Applying STATCOM to DFIG 
 
There are two different types of controllers have been used 

to control the DVR; 

2.1) PI Controller 

The controller of the DVR is a conventional PI controller 
with constant proportional and integral gains. 

2.2) Fuzzy Controller 

A fuzzy logic is used to control the DVR as in [26]. A self 
tuning technique has been used to adjust the values of the 
proportional and integral gains. This enables the system to 
work with variable parameters and operating conditions. 

3) Series Grid Side Converter (SGSC) 

Another solution is to connect the GSC in series with the 
stator voltage rather than in parallel as in the conventional 
DFIG. This configuration can be accomplished alone or with 
adding extra rectifier. 

3.1) Connecting the GSC in Series Instead of Parallel 

This can be achieved by adding only a three phase injection 
transformer to connect the GSC in series with the stator 
instead of connecting it in parallel as shown in Fig. 9 [15], 
[27]. This solution suffers poor power processing capability. 

 

 

Fig. 8 Applying DVR to DFIG 

DFIGGRID

L

C

Vinj
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Fig. 9 Connecting GSC in series with the stator windings 
 

3.2) Connecting GSC in Series and Adding a Rectifier 

Another modification is made for SGSC to overcome the 
poor power processing capability, This modification is to add 
a parallel rectifier which shares the same DC link capacitor as 
shown in Fig. 10 [28]. Using a rectifier in the last topology has 
an obvious disadvantage which is lack of control.  

4) Adding SGSC 

To add an additional control to the series GSC system, 
another solution is introduced which is using the conventional 
DFIG and adding a SGSC which shares the same DC link 
capacitor of the DFIG configuration as shown in Fig. 11 [29], 
[30]. In this topology, the additional SGSC can be used to 
control two different variables. 

4.1) Using SGSC to Control the Stator Flux 

As introduced in [29] and [30], the SGSC has been used to 
remove the oscillations in the stator flux and so regulating the 
stator current and the rotor current. The disadvantage of this 
method is regulating the stator flux at a low value during the 
fault consequently; the stator power will be regulated at a 
lower value during the fault which differs from the operating 
value, leading to lose the maximum power tracking during 
faults. Another problem with this technique is using a flux 
estimator, which adds a time delay, inaccuracy and system 
complexity.  

4.2) Using SGSC to Control the Stator Voltage 

In this technique, the SGSC is used to control the stator 
voltage rather than the stator flux as introduced in [6]. In this 
technique, the same targets of containing the stator current, 
rotor current and the DC voltage within their safe limits has 
been achieved. Furthermore, the stator power is regulated at its 
operating value which keeps maximum power tracking even 
during faults. Besides, elimination of the flux estimator is used 
in the previous method.  

5) Series Passive-Impedance Network 

Another solution is adding a series passive-impedance 
network at the stator side of a DFIG wind turbine as shown in 
Fig. 12 [31]. The series switch (ܵ௦) and the parallel switch (ܵ௣) 
can be controlled to add LVRT to the DFIG.  During normal 

operation, the shunt element and series element are inactive. 
During faults, the series impedance is used for modifying the 
stator flux and limiting short-circuit current. The shunt 
impedance is used to balance the energy of the wind turbine 
during the grid fault. This technique is practical, reliable and 
has a low cost relatively [31]. 

 

 

Fig. 10 SGSC with parallel rectifier  
 

 

Fig. 11 Conventional DFIG with SGSC  

6) Superconducting Magnetic Energy Storage (SMES) 

Another solution as proposed in [32] is to connect a 
Superconducting Magnetic Energy Storage (SMES) unit with 
the PCC to improve the dynamic performance of a wind 
energy conversion system equipped with DFIG during low 
voltage. This topology depends on exchanging power between 
SMES unit and PCC. There are two main disadvantages for 
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this topology; firstly, it is effective with light sags only and 
secondly, its cost is relatively high. 
 

 

Fig. 12 DFIG with series passive-impedance network 

7) Chopper Circuit 

Another solution controls the DC link voltage by adding a 
chopper circuit to the capacitor to release the excess energy 
from the capacitor besides overrating the diodes of the RSC to 
handle the high fault current as introduced in [33]. 

8) Active and Passive Compensators 

Another solution is using active and passive ride through 
technique .In this technique, a damping resistor in series with 
the stator (passive compensator) is used in addition to 
changing the mode of control of RSC to active ride-through 
compensator mode (active compensator). In active 
compensator mode the RSC uses the d and q components of 
the rotor currents to suppress the oscillations in the stator flux 
and limit the rotor current [34]. Furthermore, a nonlinear 
control of the GSC has been used to contain the DC-link 
voltage within its safe limits.  

b) Using Different Control Schemes with Conventional 
DFIG 

In this trend the conventional DFIG configuration is used 
without adding any external hardware, LVRT capability is 
added to DFIG by changing the control of RSC or/and GSC.  

1) Linear Quadratic Output-Feedback Decentralized Control 

One solution to achieve this is to use a linear quadratic 
output-feedback decentralized control strategy for both RSC 
and GSC instead of using PI controllers as in [35]. This 
solution can be used with both symmetrical and asymmetrical 
voltage sags. 

2) Neural Networks Based Control 

Another solution is to use neural networks based controllers 
for both RSC and GSC instead of PI controllers as proposed in 
[36]. 

3) Feed-Forward Transient Compensation Control 

Another solution is to use a Feed-Forward Transient 
Compensation (FFTC) control scheme with proportional-
integral-resonant regulators for RSC only. FFTC terms are 
injected into both the inner current control loop and the outer 
power control loop as shown in Fig. 13. The FFTC current 
controller improves the transient rotor current control 
capability [37]. 

4) Power Angle Control 

Another solution is to use power angle control which is 
implemented through flux magnitude and angle control as 
introduced in [38]. The power angle control is applied on RSC 
control only as shown in Fig. 14 [38]: 

5) Flux Linkage Tracking-Based Control 

Another solution is using flux linkage tracking-based 
control strategy to suppress the short-circuit rotor current. This 
scheme is based on the concept that the rotor current is 
directly proportional to the difference between the flux linkage 
of the stator and the flux linkage of the rotor. In this scheme, 
the rotor flux linkage is controlled to track a reduced fraction 
of the changing stator flux linkage by switching the control 
algorithm of RSC during grid faults [39]. 

 

Fig. 13 FFTC scheme for DFIG 
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Fig. 14 Power angle control scheme in RSC control 
 

 

Fig. 15 Stator flux compensation using rotor voltage 
 
6) PI and Lyapunov-Based Nonlinear Control 

Another solution is presented in [40] uses a combination of 
proportional–integral (PI) and Lyapunov-based auxiliary 
nonlinear control, to stabilizes the internal (stator) dynamics 
and improves the DFIG post-fault behavior through rotor 
control voltage. 

7) Stator Flux Compensation Using Rotor Voltage 

Another solution proposes that during fault the voltage 
applied from the rotor converter to the rotor winding should be 
used to weaken the effect of the dc and negative sequence 
components in the stator-flux linkage as shown in Fig. 15 [12]. 

8) Vector-Based Hysteresis Current Regulators 

Another solution presented in [41] is to use Vector-Based 
Hysteresis Current Regulators (VBHCRs) are then used to 
control the output currents of the rotor-side and grid-side 
converters. 

IV. PERFORMANCE EVALUATION FOR DIFFERENT LVRT 

TECHNIQUES 

The different techniques have been evaluated according to 
chosen parameters and a short description has been assigned 
for some parameters; FULL: if the technique fully complies 
with the parameter, and PART: if the technique partially 
complies with the parameter as shown in Table II. 

The behavior of all solutions which uses different control 
schemes with conventional DFIG is very similar and can be 
shown together as in Table III. 

All solutions which use different control schemes with 
conventional DFIG are effective to add LVRT capability in 
moderate sags only but they have the advantage of not 
requiring external hardware.  

V. CONCLUSION 

The various techniques used to add a LVRT capability to 
the DFIG-based wind turbines have been classified into two 
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major groups. Firstly, adding extra hardware to the 
conventional DFIG and secondly, using different control 
schemes with conventional DFIG. A comprehensive review 
about each technique has been illustrated. A comparison 
between all techniques has been summarized in Tables II and 
III. To conclude, the first group has a higher cost and 

complexity but it is much more effective with deep sags and 
has great results according to the grid code. The second group 
is effective with moderate sags only but fails with deep sags. 
This group has the advantages of low cost, less system 
complexity and more reliable.  

 
TABLE II 

EVALUATION PARAMETERS FOR ADDING EXTERNAL HARDWARE TO THE CONVENTIONAL DFIG CATEGORY 
 Technique Topology Tolerate 

sag < 50% 
Tolerate sag 

> 50% 
Compensate 

unbalanced sags
Preserve GSC 
control during 

fault 

Preserve 
RSC control 
during fault 

Needs flux 
estimator 

Used for 
installed 

DFIG 

Comply to 
new grid 

codes 
Adding 
external 
hardware 

Crowbar Normal Yes Yes No No No No Yes No 

Using R-L Yes Yes No Yes 
PART 

Yes 
PART 

No Yes No 

Using SDR Yes Yes Yes Yes 
PART 

Yes 
PART 

No Yes Yes 
PART 

Time controlled Yes Yes No Yes 
PART 

Yes 
PART 

No Yes Yes 
PART 

STATCOM Yes Yes No No No No Yes Yes 
PART 

DVR Yes Yes Yes Yes 
FULL 

Yes 
FULL 

No Yes Yes 
FULL 

GSC connected in 
series 

Without parallel 
rectifier 

Yes No No Yes 
PART 

No Yes No No 

With parallel 
rectifier 

Yes Yes No Yes 
PART 

No Yes No No 

Adding SGSC Flux control Yes Yes Yes Yes 
FULL 

No Yes Yes Yes 
FULL 

Voltage control Yes Yes Yes Yes 
FULL 

Yes 
FULL 

No Yes Yes 
FULL 

Series passive impedance Yes Yes Yes Yes 
FULL 

Yes 
PART 

YES Yes Yes 
FULL 

SMES Yes No No Yes 
FULL 

Yes 
PART 

No Yes Yes 
PART 

Chopper circuit Yes No No Yes 
FULL 

Yes 
PART 

No No Yes 
PART 

Active and passive resistors Yes Yes No Yes 
FULL 

Yes 
PART 

Yes Yes Yes 
FULL 

 
TABLE III 

EVALUATION PARAMETERS FOR USING DIFFERENT CONTROL SCHEMES WITH CONVENTIONAL DFIG CATEGORY 

 
Scheme 

Tolerate sag < 
50% 

Tolerate sag > 
50% 

Compensate 
unbalanced 

sags 

Preserve GSC 
control during 

fault 

Preserve RSC 
control during 

fault 

Needs flux 
estimator 

Used for 
installed DFIG

Comply to 
new grid codes

Using different 
control schemes with 
conventional DFIG 

All Yes No Yes Yes No - Yes 
Yes 

PART 

 
APPENDIX 
TABLE IV 

PARAMETERS OF THE SIMULATED 1.5 MW DFIG 

Symbol Quantity Value 

Vs Stator Voltage (rms) 575 

f Frequency (Hz) 60 

Rs Stator Resistance (pu) 0.0071 

Rr Rotor Resistance (pu) 0.005 

Ls Stator Inductance (pu) 0.171 

Lr Rotor Inductance (pu) 0.156 

Lm Magnetizing Inductance (pu) 2.9 

p Number of Pole Pairs 3 

H Inertia Constant (s) 5.04 
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