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 
Abstract—Time history seismic analysis is supposed to be the 

most accurate method to predict the seismic demand of structures. On 
the other hand, the required computational time of this method 
toward achieving the result is its main deficiency. While being 
applied in optimization process, in which the structure must be 
analyzed thousands of time, reducing the required computational time 
of seismic analysis of structures makes the optimization algorithms 
more practical. Apparently, the invented approximate methods 
produce some amount of errors in comparison with exact time history 
analysis but the recently proposed method namely, Complete 
Quadratic Combination (CQC) and Sum Root of the Sum of Squares 
(SRSS) drastically reduces the computational time by combination of 
peak responses in each mode. In the present research, the Basic 
Modal Displacement (BMD) method is introduced and applied 
towards estimation of seismic demand of main structure. Seismic 
demand of sampled structure is estimated by calculation of modal 
displacement of basic structure (in which the modal displacement has 
been calculated). Shear steel sampled structures are selected as case 
studies. The error applying the introduced method is calculated by 
comparison of the estimated seismic demands with exact time history 
dynamic analysis. The efficiency of the proposed method is 
demonstrated by application of three types of earthquakes (in view of 
time of peak ground acceleration).  

 
Keywords Time history dynamic analysis, basic modal 

displacement, earthquake induced demands, shear steel structures. 

I. INTRODUCTION 

HE time history analysis of large scale structures requires 
much computational effort. This drawback more resonates 

optimization problems in which the dynamic analyses are 
performed for many times for a structure [1]. Consequently, 
approximating the time history responses of structures may 
effectively reduce the computational burden.  

Maybe the first outstanding work for avoiding time history 
analysis is performed by E. Rosenblueth [2] in his PhD thesis. 
He introduced the SRSS rule for modal combination by using 
response spectrum. The SRSS rule predicts the peak of 
responses without any need to derive complete response of the 
structure. This modal combination rule provides good 
response estimates for structures with well-separated natural 
frequencies only. This drawback has been later recognized by 
Wilson et al. [3] and that is why they produced a replacement 
for SRSS calling CQC rule for modal combination. These 
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probabilistically methods are based on the assumption that the 
structure behaves linearly and more over the input earthquake 
excitation is a stationary wave. Therefore, although 
estimations of the methods are acceptable for engineering 
problems, for scientific problem researcher seek for better 
replacements with more accuracy. 

Several researches have been implemented towards 
structural optimization against earthquake effects. 
Enhancement of genetic algorithm in optimization process 
through application of neural networks was implemented by 
Gholizadeh and Salajegheh [4]. Wavelet transforms has been 
applied by Salajegheh and Heidari [5], towards reduction of 
analysis run time of structures being excited by earthquake 
strong ground motions. In the mentioned research, the 
earthquake data points have been halved through 
transformation of acceleration time histories by Wavelet 
Transforms. Wavelet transformation divided the acceleration 
time history function into two main parts, namely low and 
high frequencies. High frequency part of strong ground motion 
data had a minor effects on seismic induced demands, hence 
has been omitted, while low frequency part of strong ground 
motion (with lower data points compared with original time 
function) has been applied to achieve seismic induced 
demands of the structure. Liang Su et al. [6] proposed mean 
response spectrum to achieve linear response of structures 
against strong ground motions of several earthquakes. 

Lagaros et al. [7] examined the influence of various design 
procedures on the dynamic performance of real-scale steel 
buildings. In addition, Zou and Chan [8] and Kocer and Arora 
[9] have used traditional and evolutionary search techniques to 
optimize the seismic design of structures by using the response 
spectrum or time history analysis. 

Prendes Gero et al. [10]–[11] employed a modified elitist 
Genetic Algorithm (GA) for the design optimization of 3D 
steel structures. Also, they compared their proposed 
optimization algorithm with the common commercial 
solutions for structural optimization. Cheng et al. [12] used a 
multi-objective GA-based formulation incorporating game and 
fuzzy set theory for the optimum design of dynamically loaded 
2D frames.  

In the present research, a logical methodology is introduced 
towards prediction of earthquake induced response of 
structures. Modal response of a hypothetical structure is 
calculated though time history analysis and through scaling of 
coordinate axes the modal response of real structure is 
predicted.  
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II. BASIC MODAL DISPLACEMENT 

For a structure with n degrees of freedom, the dynamic 
equation of motion under the ground acceleration 

gU  can be 

written as  
 

gUMlKUUCUM                                             (1) 

 
where M, C and K are mass, damping and stiffness matrices of 
the structure and U and l are vector of displacements and ones, 
respectively. 

The eigenvalue problem written as 
 

iii MK                                                                      (2) 

 
The eigenvalue problem leads to computation of the mode 

shapes also known as eigenvectors, , and eigenvalues also 

known as frequencies i . 

The eigenvalues are numbered in the descending order 

(
1 2 3 ...     ). 

 Squares of circular frequencies are equal to eigenvalues, 
 

2
i i                                                                             (3)  

 

where i is circular frequency of the ith mode. 

By a transformation, the equation of motion is written in the 
modal coordinates. 

 

qU                                                                               (4) 
 

After pre-multiplication of T  to the transformed equation, 
the system of differential equations is decoupled into n 
separate differential equations as:  

                           
22 ( ); 1, 2,...i i i i i i i gq q q u t i n                               (5) 

 
where 

iq  is the ith modal coordinate (the ith coordinate of 

vector q) and i  is the modal participation factor and written 

as 
 

MlT
ii                                                                         (6) 

 
Let us consider a specific design solution for the structure. 

This specific determined structure is hereafter called the basic 
structure or the basic model. All parameters regarding the 
basic model are denoted by the over bar sign. Hence, for the 
basic structure the dynamic equation of motion in its modal 
coordinates is according to “(5)”. 

If the design parameters of the basic structure change, the 
modal information of the structure alters. The n decoupled 
differential equations for the changed structure are written as 
calculation “(5)”. However, solving “(5)”, n times for n modes 

by employing both Duhamel's integral or direct integration 
methods (e.g. Wilson   and   Newmark methods) is 

computationally expensive. Therefore, in this paper, we 
propose to modify the modal displacements of the basic 
structure in a way to obtain the modal displacements of the 
new structure with the new design parameters written as 

 

( ) ( ); 1, 2,...i i i iq t q t i n                                                 (7) 

 

The parameters 
i  and 

i  scale the basic modal 

coordinates along time (horizontal axis) with the amount of 
i  

times and displacements (vertical axis) with the amount of 
1/ i  times, respectively (see Fig. 1). In fact, it is assumed that 

by changing design variables, the pattern of modal 
displacements do slightly change, and the location and amount 
of maximums and minimums modifies only. 

 

1

i

1 i

i

1

i


 
Fig. 1 1 i  and i  as scaling factors along the corresponding axes 

for the ith modal displacement 
 
Here, we explain that how the almost optimum amounts for 

i  and ; 1, 2, ...i i n   are derived. It is known that the time 

required for a single degree of freedom system to complete a 
cycle of vibration when subjected to an earthquake ground 
motion is very close to the natural period of the system. This 
interesting result, valid for typical ground motions containing 
a wide range of frequencies, and can be proven using random 
vibration theory [13]. 

Result implies that i  can written as 

 

iii x  )(                                                                  (8) 

 
Also, the modal displacements should be scaled in a way to 

the maximum amount of modal displacements to be equal to 
the values suggested by displacement spectrum of the 
earthquake for a single degree of freedom system. 

Remind that the plot of the peak values for displacement as 
a function of circular frequency,  , is called the displacement 
spectrum. 

The value i as written as 
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)())(( iii DxD                                                        (9) 

 
where (.)D  presents the displacement spectrum of the input 

earthquake. 

III. APPLIED STRONG GROUND MOTIONS 

To demonstrate the efficiency of the proposed method 
towards prediction of seismic induced demands, time history 
analysis of sampled shear structures against three horizontal 
strong ground motions, Northridge, Artificial earthquake and 
Superstition hill is implemented. Applied acceleration time 
histories are shown in Figs. 2-4. 
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Fig. 2 Acceleration history of Northridge 
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Fig. 3 Acceleration history of Artificial earthquake 
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Fig. 4 Acceleration history of Superstition hill 

IV. SHEAR STEEL FRAMES 

5-story 1-bay steel shear frames are considered as case 
studies (see Fig. 5). The mentioned frames have 5 degrees of 
freedom. Strong ground motions of earthquakes are applied 
horizontally and weight of each story is considered to be 21 

tons. To account for different story stiffness, column sections 
are selected from the cross sections shown in Table I.  

 

 

Fig. 5 A Five-story shear frame 
 

TABLE I 
AVAILABLE PROFILES FOR SHEAR FRAMES  

No. Profile 

1 Box 180*180*16 

2 Box 220*220*17.5 

3 Box 240*240*20 

4 Box 260*260*20 

5 Box 280*280*20 

6 Box 300*300*20 

7 Box 320*320*20 

8 Box 340*340*20 

 
Five types of shear frames, which are analyzed in this study, 

are shown in Table II.  
 

TABLE II 
SHEAR FRAME STRUCTURES AND SECTIONS USED IN THEM 

Structure no. 
Element groups no. 

1 2 3 4 5 

1 3 3 2 2 1 

2 4 3 3 1 1 

3 5 4 3 2 1 

4 7 4 3 3 3 

5 8 7 6 6 4 

 

Hypothetical and base structures according to BMD method 
and for the considered case studies are shown in Table III.  
 

TABLE III 
NEW MODEL AND BASE MODEL FOR BMD IN SHEAR FRAMES 

New structure no. Base structure no. 

1 3 
2 5 

3 1 

4 1 

5 3 

V. NUMERICAL RESULTS 

To demonstrate the accuracy of the proposed method 
towards prediction of seismic induced demand values, 
achieved results applying BMD method are compared with 
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two commonly used methods, namely SRSS and CQC. 
Approximation errors in prediction of roof displacement 
applying each method are shown in Tables IV-VI, in which 
results of time history analysis of the sampled structures are 
considered as exact solution. Furthermore, to show the 
required computational effort for each method, analysis run 
time is shown below the approximation errors in the same 
tables. 

 
TABLE IV 

DISPLACEMENT ERROR PERCENT FOR THE ROOF OF SHEAR FRAMES IN 

VARIOUS ANALYSIS SUBJECTED NORTHRIDGE GROUND MOTION 

Analysis method Structure no. 
and time (s) BMD CQC SRSS 

2.98 3.21 3.20 1 

0.015 0.012 0.006 Time 

6.66 7.86 7.84 2 

0.011 0.014 0.006 Time 

3.24 7.47 7.45 3 

0.014 0.010 0.004 Time 

2.24 3.95 3.96 4 

0.010 0.009 0.004 Time 

1.72 2.57 2.57 5 

0.013 0.009 0.004 Time 

 
TABLE V 

DISPLACEMENT ERROR PERCENT FOR THE ROOF OF SHEAR FRAMES IN 

VARIOUS ANALYSIS SUBJECTED ARTIFICIAL EARTHQUAKE 

Analysis method Structure number 
and time (s) BMD CQC SRSS 

2.39 10.35 10.33 1 

0.016 0.009 0.004 Time 

0.14 9.36 9.34 2 

0.016 0.010 0.004 Time 

4.48 11.06 11.04 3 

0.017 0.010 0.004 Time 

3.44 3.21 3.20 4 

0.014 0.009 0.004 Time 

3.85 4.72 4.71 5 

0.021 0.010 0.004 Time 

 
TABLE VI 

DISPLACEMENT ERROR PERCENT FOR THE ROOF OF SHEAR FRAMES IN 

VARIOUS ANALYSIS SUBJECTED SUPERSTITION HILL GROUND MOTION 

Analysis method Structure number 
and time (s) BMD CQC SRSS 

13.34 0.75 0.78 1 

0.021 0.010 0.004 Time 

4.69 5.11 5.15 2 

0.020 0.010 0.004 Time 

8.12 0.79 0.75 3 

0.022 0.014 0.006 Time 

0.54 2.64 2.63 4 

0.020 0.010 0.004 Time 

0.72 3.62 3.63 5 

0.024 0.010 0.004 Time 

 

To illustrate the efficiency of the proposed method in 
prediction of seismic demand time function, roof displacement 
time history of third structure, being excited by three assumed 

earthquakes and calculated based on time history analysis, is 
compared with BMD results in Figs. 6-8.  
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Fig. 6 Roof displacement derived by BMD compared with exact ones 
for third shear frame, under Northridge quake 
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Fig. 7 Roof displacement derived by BMD compared with exact ones 
for third shear frame, under Artificial quake 
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Fig. 8 Roof displacement derived by BMD compared with exact ones 
for third shear frame, under superstition hill quake 
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