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 
Abstract—In this work, the IMC-PID controller cascaded filter 

based on Internal Model Control (IMC) scheme is systematically 
proposed for the simplified decoupling control system. The 
simplified decoupling is firstly introduced for multivariable processes 
by using coefficient matching to obtain a stable, proper, and causal 
simplified decoupler. Accordingly, transfer functions of decoupled 
apparent processes can be expressed as a set of n equivalent 
independent processes and then derived as a ratio of the original 
open-loop transfer function to the diagonal element of the dynamic 
relative gain array. The IMC-PID controller in series with filter is 
then directly employed to enhance the overall performance of the 
decoupling control system while avoiding difficulties arising from 
properties inherent to simplified decoupling. Some simulation studies 
are considered to demonstrate the simplicity and effectiveness of the 
proposed method. Simulations were conducted by tuning various 
controllers of the multivariate processes with multiple time delays. 
The results indicate that the proposed method consistently performs 
well with fast and well-balanced closed-loop time responses. 
 

Keywords—Coefficient matching method, internal model control 
scheme, PID controller cascaded filter, simplified decoupler.  

I. INTRODUCTION 

YNAMIC decoupling control methodologies are 
available for ideal decoupling, simplified decoupling, and 

inverted decoupling, with the choice of decoupling method 
depending largely on each method’s advantages and 
restrictions [1]–[5]. Ideal decoupling provides convenient 
controller design, since decoupled apparent processes are 
systematically obtained as a diagonal matrix of processes, but 
it is rarely used in practice due to its complicated decoupling 
elements, realizability problems, and sensitivity to modeling 
errors. Inverted decoupling is also known as feedforward 
decoupling and is rarely implemented, even though it can take 
into account the saturation of manipulated variables. Similar to 
ideal decoupling, it is sensitive to modeling errors. Simplified 
decoupling is most widely used in industrial practice because 
of its robustness and simple decoupling network (i.e., its 
diagonal elements are set as unity). However, the decoupled 
apparent processes are intricate, which hinders controller 
tuning. Recently, there is no concrete formulation of general 
simplified decoupling for n n  processes beyond a case-study 
that was restrictively extended to 3 3  processes using an 
interaction compensator as a static compensator. 

This work aims to derive the PID controller tuning rules for 
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simplified dynamic decoupling. Accordingly, decoupled 
apparent processes can be exactly determined from the ratio of 
the original open-loop transfer functions and the diagonal 
elements of the dynamic relative gain arrays (DRGAs) with an 
essential reduction technique introduced to obtain realizable 
decoupler elements. An effective method of PI/PID controller 
design is then suggested for simplified decoupling control 
systems, where the controllers can be directly obtained 
without any approximation of the decoupled apparent 
processes. 

The proposed method’s effectiveness was demonstrated 
through several examples of interacting multivariable 
processes. Simulation results showed that the proposed 
method consistently performed better than other existing 
methods.  
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Fig. 1 Block diagram of a decoupling control system 

II. PRELIMINARIES 

A. Simplified Decoupling Design 

Consider the block diagram of decoupling control system 
for a general n n  process as shown in Fig. 1, where 

CG denotes the multi-loop controller, D represents the 

decoupling matrix, G and Q  are the multivariable and 
decoupled apparent processes, respectively. 

It is clear that the idea of decoupling is to determine a 

decoupling matrix D so that GD = Q is diagonal matrix. Then, 
the multi-loop controller can be directly designed based on the 
decoupled apparent process as a set of n independent SISO 
processes.  
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In order to design the simplified decoupling for a stable and 
square process with n input/outputs, all diagonal elements of 
decoupling matrix dii are commonly set to unity. Then, the 
following general form of simplified decoupler and decoupled 
apparent process can be respectively given by considering 
Truong and Lee [6]: 
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where C denotes the transpose of the matrix of cofactors 
corresponding to the entries of G , which is given as 
following: 
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Furthermore, it is evident that each diagonal element of the 

DRGA matrix [6]–[10] is calculated as 
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B. Simplified Decoupling Design for the Typical Processes 

Considering a TITO system as follows:  
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By using (2), the decoupler matrix is obtained by: 
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The cofactor of G  is easily given by  
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Then, the decoupler elements can be found as: 
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According to (3), the decoupled apparent process is found 
as: 
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These results are exactly same with those of most 
approaches in the literature regarding simplified decoupling 

for TITO processes. 

III. PID CONTROLLER DESIGN FOR THE SIMPLIFIED 

DECOUPLING 

A. Design of Ideal Controller 

For the simplified control system, diagonal PI/PID 
controllers  c sG are implemented for the decoupled apparent 

process, (s)Q . From the standard block diagram of the 

decoupling control as shown in Fig. 1, the closed-loop transfer 
function matrix between the set points and outputs can be 
given as:  

 

   1 11
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Then, the resulting controller can be written by  
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Note that the controller given by (14) is not a standard 

PI/PID form and it consists of two parts. i.e., -1( )sQ  and 

  1-1( )s


H I . According to (21), the first part, -1( )sQ , can be 

written as  
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Furthermore, 11( )s
  H I can be expressed as 
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where iih  is the diagonal element of ( )sH that corresponds to 

the desired closed-loop transfer function of each loop. 
Substituting (15) and (16) into (14) and rearranging it, the 

resulting controller is rewritten as: 
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According to the IMC theory [11], under the assumption of 
stable and causal ii ( )s , the desired closed-loop transfer 

function iih ( )s of the ith loop is chosen as 
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where iiθ , kz , and *
kz  denote the time delay, the RHP zeros, 

and the corresponding complex conjugate of RHP zeros of the 
ith diagonal element of the process transfer function matrix, 

respectively. iq is the number of the RHP zeros. The IMC 

filter time constant, i , which is also equivalent to the closed-

loop time constant, is an adjustable parameter controlling the 
tradeoff between the performance and robustness. mi is the 

relative order of the numerator and denominator in iig ( )s . 

Substituting (18) into (17), the controller of the ith loop can 
be expressed by: 
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From (19), it is clear that the non-minimum portion of 

iig ( )s  is cancelled out by the time delay and RHP zero zk in 

the numerator, and thus the controller has neither causality nor 
stability problems.  

The resulting controller obtained by (19) is not a standard 
PI/PID controller form. Therefore, the following Padé series 
expansion is utilized to obtain the PI/PID controller: 
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Fig. 2 Block diagram of feedback control strategies (a) Classical 
feedback control (b) IMC 

B. Design of IMC-PID Cascaded with Filter  

According to the standard block diagram of the feedback 
control system as shown in Fig. 1, where  PG s ,  PG s , 

 cG s ,  q s , and  rf s denote the process, the process model, 

the equivalent feedback controller, the IMC controller, and the 

set-point filter, respectively. Assume that  y s ,  r s ,  d s , 

and  u s  correspond to the controlled output, set-point input, 

disturbance input, and the manipulated variables. If there is no 

model error (i.e.,    P PG Gs s  ), then the set-point and 

disturbance responses in the IMC control structure can be 
simplified as:  

 

                 P r P dy s G s q s f s r s 1 G s q s G s d s    
  (20) 

 
In accordance with the IMC parameterization [11], the 

process model  PG s  is factored into two parts:  

 

     P m AG p ps s s  (21) 

 

where  mp s  is the portion of the model inverted by the 

controller (minimum phase),  Ap s is the portion of the model 

not inverted by the controller (it is the non-minimum phase 
that may be included the dead time and/or right half plane 
zeros and chosen to be all-pass), and the requirement that 

 Ap 0  1  is necessary for the controlled variable to track its 

set-point. 
The IMC controller  q s  can be designed as: 

 

     1
mq s p f ss  (22) 

 

For the 2DOF control structure, the IMC filter  f s  is 

chosen for enhanced performance as: 
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where   is an adjustable parameter, which can be utilized for 
the tradeoffs between the performance and robustness. The 
integer n is selected to be large enough for the IMC controller 
proper. The parameter i  is determined to cancel the poles 

near zero in  dG s . 
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Substituting (23) into (22), the IMC controller is obtained 

by 
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Substituting (25) into (20), the closed-loop transfer 

functions for the desired set-point and disturbance responses 
are respectively simplified as: 
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The ideal feedback controller  cG s that yields the desired 

loop responses given by (26) and (27) can be constituted by  
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Therefore, the ideal feedback controller for achieving the 
desired loop response can be easily obtained by 
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It is indicated from (29) that the numerator expression 

 1 1m i
i i s   may cause an unreasonable overshoot in the 

servo response. To overcome this problem, we can design the 
suitable set-point filter. Moreover, the resulting controller 
given by (29) does not have the standard PID form despite that 
it is physically realizable. Consequently, it is necessary to 
convert it into the PID form more closely by using some 
clever approximation techniques, such as the expression of 
time-delay part with the low-order Padé approximation used 
by a number of authors [11], [12]. In this paper, we also utilize 
the low-order Padé approximation in the different manner with 
previous design methods in terms of the most closely 
controller approximates the equivalent feedback controller. 

C. IMC-PID Tuning Rules 

The FOPDT process model is one of the most widely used 
models in the process industries, which is usually considered 
to design the PID controller. The process transfer function is 
given as: 
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where K , τ , and θ  represent the process gain, the time 
constant, and the time delay, respectively. 

For the 2DOF control structure, the IMC filter is reasonable 
to design as following form: 
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Accordingly, the ideal feedback controller is found as 
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Noted that the approximation of the dead-time term θse in 
the denominator by a 3/2 Padé expansion. By comparing the 
resulting controller obtained by (32) and the PID controller in 
cascaded with the filter that is given by (33). 
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Finally, the analytical tuning rules of the proportional, 

integral, and derivative terms of the proposed PID controller 
can be compactly obtained as 
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The value of the extra degree of freedom β  is determined 

for neglecting the open-loop pole at 1 τs   . According to 

(5), the value of   can be found as  
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The filter parameters in (33) can be easily found as 
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c   (40) 
 

0d   (41) 
 

As mentioned from (29), the lead term  1s   can cause 

excessive overshoot in the set-point response, which can be 
eradicated by adding the set-point filter rf  as: 

 

 r

γβ 1
f

β 1

s
s

s





 (42)  

 
where 0 1  .  

Some important remarks can be described as: 
 0  . For this extreme case, there is no lead term in the 

set-point filter, which can cause a slow servo response.  
 1   . For this case, there is no set-point filter.  

 0 1  . That means we adjust  online to obtain the 

desired speed of the set-point response.  

IV. SIMULATION STUDY 

In this section, two examples are considered to demonstrate 
the advanced performance of the proposed method. To 
guarantee a fair comparison, the performance and robustness 
of the decoupling control system are measured by the 
following evaluation criteria. 

A. Integral Absolute Error Index 

 To evaluate the closed-loop performance, the integral 
absolute error (IAE) criterion is considered, which is defined 
as [13]: 

 

 
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IAE e
T

t dt   (43) 

 

where      e r yt t t  . T  is a finite time which is chosen 

for the integral approach steady-state value. 

B. Total Variation (TV) 

To evaluate the magnitude of the manipulated input usage, 
the total up and down movement of the control signal is 
considered as [13]: 

 

1

TV u( 1) u( )
T

k

k k
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 TV is a good measure of the smoothness of controller 
output and should be small. 

C. Case Study 

In this work, the Wood and Berry (WB) column [14], a 
pilot-scale distillation column consisting of an eight-tray plus 
re-boiler separating methanol and water, is considered. The 
open-loop transfer function matrix is given by 
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By using (7), the simplified decoupling matrix is obtained 

by 
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The SAT [15] and BLT [16] design methods are employed 

here for the comparison.  
 

 

 

Fig. 3 Closed-loop responses to the sequential step changes in the set-
point for the WB column 

 
For the proposed method, a set of the adjustable parameters 

iλ  are suggested to achieve a desirable specification of robust 

stability and performance by increasing them monotonously. 
Therefore, the closed-loop time constant values iλ  are 

obtained as 5.26 and 8.00 for loops 1 and 2, respectively. 
The resulting controller parameters and performance indices 

calculated using the above-mentioned methods are also listed 
in Table I. Fig. 3 compares the closed-loop time responses by 
the proposed method and the above-mentioned design 
methods, where the unit step changes in the set-point are 
sequentially made at t = 0 and t = 80 to the 1st and 2nd loops, 
respectively. It is clear from Fig. 3 that the proposed design 
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method provides a good performance with fast and well-
balanced responses in comparison with those of the existing 
methods. Besides, the effectiveness of the proposed design 
method is also confirmed by its smallest IAE value in Table I. 

 
TABLE I 

CONTROLLER PARAMETERS AND RESULTING PERFORMANCE INDICES FOR THE 

WB COLUMN  

Controller parameters Proposed BLT SAT 

CK  0.035, -0.015 0.38, -0.075 0.87, -0.09 

Iτ  0.653, 1.200 8.29, 23.60 3.25, 10.40 

Dτ  0.204, 0.375 - - 

a 0.369, 0.702 - - 

b 0.103, 0.351 - - 

c 9.194, 10.67 - - 

d 0, 0 - - 

 0.900, 0.80 - - 

λ  5.260, 8.00 - - 

TV 2.55 6.22 4.24 

IAE 11.15 57.99 22.6 

V. CONCLUSION 

A generalized approach of the simplified decoupling 
technique is effectively for improving the overall performance 
of a multivariable control system. Since it is proved that the 
simplified decoupler element is compactly formulated as a 
ratio of the cofactor of open-loop transfer function matrix of 
multivariable process to its diagonal element. Moreover, the 
decoupled apparent process is also easily found as a ratio of 
the diagonal original open-loop transfer function to the 
diagonal element of DRGA. Therefore, the proposed IMC-PID 
controller cascaded with filter PI/PID can be directly utilized 
for the simplified decoupling system. 

The simulations were conducted by tuning various 
controllers for the multivariable processes with multiple time 
delays. The results indicate that the proposed method 
consistently affords a good performance with a fast and well-
balanced closed-loop time response.  
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