
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:10, No:7, 2016

889

 

 

 
Abstract—The fractional–order proportional integral (FOPI) 

controller tuning rules based on the fractional calculus for the cascade 
control system are systematically proposed in this paper. 
Accordingly, the ideal controller is obtained by using internal model 
control (IMC) approach for both the inner and outer loops, which 
gives the desired closed-loop responses. On the basis of the fractional 
calculus, the analytical tuning rules of FOPI controller for the inner 
loop can be established in the frequency domain. Besides, the outer 
loop is tuned by using any integer PI/PID controller tuning rules in 
the literature. The simulation study is considered for the stable 
process model and the results demonstrate the simplicity, flexibility, 
and effectiveness of the proposed method for the cascade control 
system in compared with the other methods. 
 

Keywords—Fractional calculus, fractional–order proportional 
integral controller, cascade control system, internal model control 
approach. 

I. INTRODUCTION 

HE performance of cascade control system largely 
depends on tuning of both inner and outer loops. For the 

design method based on the frequency response, the tuning 
rules given by [1]-[3] are usually recommended to design the 
controllers in terms of higher order dynamics and/or time 
delay in the open loop transfer function of outer loop. 
However, the frequency response methods also have a major 
weakness due to many trial and error graphical calculations. 
Krishnaswamy [4] introduced the tuning charts, which can be 
predicted the primary controller parameters by using the 
integral time absolute error (ITAE) criterion for the load 
disturbance on the secondary loop. However, this method is 
also limited to use for the first-order plus dead time (FOPDT) 
model and just focused on the proportional integral/ 
proportional (PI/P) configuration. Therefore, the overall 
performance of control system can be poor for higher order 
process models. To overcome this problem, [5] introduced the 
tuning rules to obtain desired closed loop responses for the 
cascade control system and showed the enhanced overall 
performance. In general, there are two steps for the tuning of 
cascade control system: the secondary controller is firstly 
tuned based on the inner process model and the primary 
controller is then tuned based on the outer process model. 
Accordingly, if the secondary controller is retuned for some 
uncertainties, an additional identification step is essential for 
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retuning the primary controller, which is often unwieldy in the 
industry.  

Recently, fractional calculus [6], [7] that has been an 
increasing attention paid to fractional-order processes, which 
are really useful to represent the different stable physical 
phenomena with anomalous decay, both from the academic 
and control engineers for the modeling and control issues due 
to its flexibility and advancement in terms of computation 
power. Besides, the fractional-order differential equations 
(FODE) can be obtained by using fractional calculus and is 
also a generalization of the ordinary differential equations 
(ODE). The generalization of the PID controller, which is so-
called the PIλDμ [8], is involved two extra parameters as the 
fractional-order integrator (λ) and fractional-order 
differentiator (µ). The fractional-order PID controller affords 
more flexibility in PID controller design due to the selection 
of five controller parameters that include the proportional 
gain, the integral gain, the derivative gain, the integral order, 
and the derivative order. However, the tuning rules of 
FOPI/PID controller are much more complex in compared 
with standard (integer) PID controller that has only three 
parameters [8], [9]. In order to pose the same ease of use of 
standard PID controller, there are many different ways to 
design the FOPI/PID controller. The first mention involving 
the use of fractional structure in a feedback-loop was early 
made by [10] and then it was extended by [11], where a 
feedback amplifier was obtained by considering a feedback-
loop in terms of the performance of the closed-loop that was 
invariant to changes in amplifier gain. However, this idea was 
not concretized and remained for decades as a simple 
proposition. Oustaloup [12] introduced the fractional-order 
algorithms for the control of dynamic system based on non-
integer derivative and demonstrated the significant 
improvement of the CRONE (French abbreviation of 
Commande Robuste d’Ordre Non Entier) controller in 
compared with the integer PID controller. In general, due to its 
two extra parameters (λ and µ), the fractional order PID 
controller can be achieved better performance in compared 
with the classical PID controller and it has been become a new 
trend to solve many industrial control problems [13], [14]. In 
accordance with the literature, the tuning method of PIλDμ can 
be generally classified as analytic [9] and heuristic methods 
[15]. In fact, most of the analytic methods are often tuned by 
considering the nonlinear objective function, which is 
depended on the specification imposed by the users [15].  

In this paper, our aim is to design an analytic method of 
generalized FOPI controller for enhanced performances of 
both integer and fractional processes with time delay for 
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cascade control systems. It is mainly based on the concepts of 
fractional calculus [6] and IMC approach [16]. By using the 
frequency domain, the proposed PI tuning rules can be directly 
derived for many typical process models without introducing 
any nonlinear objective function.  

II. PRELIMINARIES 

Some basic fundamentals of fractional calculus, together 
with the problem statement that need to understand the 
fractional system, as well as the controller are briefly 
introduced in this section. 

A. Fractional Calculus 

Fractional calculus [6] is generalization of the ordinary 
calculus, which is developed a functional operator D, 
associated to an order v that is not restricted to integer 
numbers. It generalizes usual notions of derivative for a 
positive v and integrals for a negative v. 

It is clear that there are various kinds of definitions for 
fractional derivative. However, the most commonly use is the 
Riemann-Liouville definition [6], which is generalized two 
equalities easily proved for integer orders: 
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It is important to note that the generalized definition of D 

becomes  v
c xD f x . The Laplace transform of D pursues the 

well-known rule for zero initial condition as 

   0
v v
xL D f x s F s    . It is implied that under initial 

condition, the system with a dynamic behavior described by 
differential equations involving fractional derivative give rise 
to transfer functions with fractional power of s. More details 
are given in [6].  

B. Fractional Linear Model 

According to a single-input, single-output (SISO) linear 
time invariant (LTI) system, the FODE, provided both input 
and output signals u(t) and y(t) that is relaxed at t = 0, can be 
expressed by differential equation: 
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As a result, (2) can be described in the Laplace domain by 

the following transfer function: 
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where i and i  are arbitrary real positive.  

III. ANALYTICAL TUNING RULES OF FOPI CONTROLLERS FOR 

CASCADE CONTROL SYSTEM 

A. Design of FOPI Controller in Frequency Domain 

The fractional integro-differential equation of the FOPI 
controller is described by 

 

       λ
C IK K ,   λ 0tu t e t D e t    (4)  

 
where 

C IK , K , and  denote the proportional term, integral 

term, and fractional order in the FOPI controller, respectively.  
 The continuous transfer function of the FOPI controller can 

be obtained through Laplace transformation as: 
 

  I
C C

K
G s K

s
    (5) 

 
From (5), it is clear that the FOPI controller involves three 

parameters (KC, KI, and ) to tune, since the fractional order λ 
is not necessarily integer.  

The FOPI controller is represented in the frequency domain 
by substituting s j  into (5): 
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Hence, the convenient form is given as: 
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The FOPI controller in terms of the complex equation is 

established by substituting (7) into (6): 
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B. FOPI Controller Design Procedure for General Process 
Models 

 

Fig. 1 Block diagram of cascade control system 
 
The cascade control system is shown in Fig. 1; the closed 

loop transfer functions for inner and outer loops are obtained 
by: 
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Here, the controllers GC1 and GC2 have to be designed to 
satisfy set-point tracking (R1) and disturbance (D1, D2) 
regulating requirements. 

C. Design of Secondary Controller 

A secondary controller has to be designed to such that set-
point tracking (Y2/R2) gives a stable overdamping response. In 
accordance with the IMC parameterization introduced by [16], 
the process model  PG s  is factored into two parts: 

     P m AG p ps s s , where  mp s  is the portion of the model 

inverted by the controller (minimum phase),  Ap s is the 

portion of the model not inverted by the controller (it is the 
non-minimum phase that may be included the dead time 
and/or right half plane zeros and chosen to be all-pass), and 
the requirement that  Ap 0  1  is necessary for the controlled 

variable to track its set-point. Then, the IMC controller  q s  

can be designed as      1
mq s p f ss . For the 1DOF control 

structure, the IMC filter  f s  is chosen for enhanced 

performance as: 
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where c  is an adjustable parameter, which can be utilized for 

the tradeoffs between the performance and robustness. The 
integer r is selected to be large enough for the IMC controller 
proper. Then, the IMC controller is obtained by 
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Substituting (11) into (9), the closed-loop transfer functions 

for the desired set-point is simplified as: 
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The ideal feedback controller 2GC that yields the desired 

loop responses can be constituted by  
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Therefore, the ideal feedback controller can be found by 
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The resulting controller given by (15) does not have the 

FOPI-type controller form despite that it is physically 

realizable. Therefore, it should be transformed into the 
complex form, and then compared with (8). Finally, the 
analytical tuning rules can be simply derived for a number of 
process models. 

Consider the FOPDT process model as following: 
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In accordance with the above-mention procedure for the 

design of IMC-based controller, the ideal feedback controller 
equivalent to the IMC controller can be found by 
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By substituting ωs j  into (17), it yields 
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where, 
 

   cos sin ,    je j           (19) 

 
By comparing (18) with (6), the analytical tuning rules can 

be found as: 
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D. Design of Primary Controller 

The closed loop transfer function for the outer loop can be 
approximately represented by 
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Therefore, the process model of the outer loop is considered as 
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Now, consider a stable process model of the outer loop of 
the form: 

 

     1 1 1m AG s p s p s  (24) 

 
Here, our purpose is also to design the controller, GC1, so that 
the closed loop transfer function of the outer loop, Y1/R1, has 
the form given by 
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Then, the controller transfer function of the outer loop is 
represented by: 
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The primary controller GC1 can be approximated to the 

PI/PID controller form as shown in [5]. 
 

 

Fig. 2 Closed loop response due to set point change (Y1/R1) for the 
illustrative example 

 

 

Fig. 3 Closed loop response due to set point change (Y1/D2) for the 
illustrative example 

 

 

Fig. 4 Closed loop response due to set point change (Y1/D1) for the 
illustrative example 

IV. SIMULATION STUDY 

In order to have a fair comparison, the IAE criterion is 
considered here for the set-point tracking [17]:  
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In this section, the following process model introduced by 

[17] and [5] was studied as the illustrated example to 
demonstrate the performance of the proposed method in 
comparison with those of other well-known methods.  

 
TABLE I 

TUNING VALUES BY ALL OF COMPARATIVE DESIGN METHODS FOR THE 

ILLUSTRATIVE EXAMPLE  

Controller 
parameters 

Proposed Seborg et al. [17] Lee et al. [5] 

Outer loop controller 

C1K  6.2 3.5 6.2 

I1τ  6.2 5.3 6.2 

D1τ  1.48 - - 

Inner loop controller 

C2K  1.68 4 5 

I2τ  0.82 - - 

2λ  0.9 - - 

IAE 2.42 2.75 2.77 

 

   

 

 

1

2

1

2

1

2

4

2 1 4 1

5

1

1

3 1

1

0.05

0.2

P

P

D

D

m

m

G
s s

G
s

G
s

G

G

G


 











 (28) 

 
The PID controllers for inner and outer loops for the above 

process were tuned by the proposed tuning rules. The results 
were compared with those by the frequency method [17] and 
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[5]. The resulting PID parameters are listed in Table I. Since 
the PID controllers in cascade control should be tuned 
considering all the closed loop performances both for set-point 
tracking (Y1/R1) and disturbance rejection (Y1/D1 and Y1/D2), 
the tuning methods were tested in terms of all these 
performances. Figs. 2-4 show the closed loop responses tuned 
by the proposed method and the frequency response method 
for the unit step change in R1, L2, and L1, respectively. The 
results shown in the figures illustrate the superior performance 
of the proposed method. 

IV. CONCLUSION 

An analytical design method of FOPI controller for the 
cascade control systems was proposed based on fractional 
calculus and IMC approach to provide improved performance 
for both disturbance rejection and set-point tracking. The 
simulation studies demonstrate that can be applied to a large 
number of dynamic models, consistently afforded the superior 
performance with fast and well-balanced closed-loop time 
responses.  
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