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 
Abstract—Nitriding of p-type Si samples by pulsed DC glow 

discharge is carried out for different Ar concentrations (30% to 90%) 
in nitrogen-argon plasma whereas the other parameters like pressure 
(2 mbar), treatment time (4 hr) and power (175 W) are kept constant. 
The phase identification, crystal structure, crystallinity, chemical 
composition, surface morphology and topography of the nitrided 
layer are studied using X-ray diffraction (XRD), Fourier transform 
infra-red spectroscopy (FTIR), optical microscopy (OM), scanning 
electron microscopy (SEM) and atomic force microscopy (AFM) 
respectively. The XRD patterns reveal the development of different 
diffraction planes of Si3N4 confirming the formation of 
polycrystalline layer. FTIR spectrum confirms the formation of bond 
between Si and N. Results reveal that addition of Ar into N2 plasma 
plays an important role to enhance the production of active species 
which facilitate the nitrogen diffusion.  
 

Keywords—Crystallinity, glow discharge, nitriding, sputtering. 

I. INTRODUCTION 

HE Si3N4 thin films show remarkable properties which 
make them suitable in various applications due to their 

diverse properties such as high mechanical strength; dielectric 
constant; excellent chemical stability; good resistance to wear 
and corrosion; thermal shock and creep. Hence, the Si3N4 films 
are used as passivation layers, alkali–ion diffusion barrier, 
gate dielectrics, oxidation mask, hard coating materials and in 
high-temperature applications [1]-[3]. The Si3N4 films are 
synthesized through different routes like direct nitridation of 
silicon [4], activated reactive evaporation (ARE) [5], chemical 
vapor deposition (CVD) [6], plasma-enhanced chemical vapor 
deposition (PECVD) [7], laser-assisted CVD [8], DC reactive 
magnetron sputtering [3] and plasma focus device [9].  

Plasma nitriding has attracted much attention because it is 
environmentally-friendly technique. A pulsed DC discharge is 
preferable over conventional DC discharge due to its operation 
at relatively high peak voltages and currents for the same 
average power as compared to conventional DC glow 
discharge which leads to increase the ionization, excitation 
and sputtering processes [10]. Plasma generated by only N2 
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gas is not suitable because its dissociation efficiencies are 
about 2% which is due to highly stable bonding between N2 
species. One promising way to enhance the dissociation of N2 
in plasma is to introduce the inert gases like Ar, neon and 
helium [11]. It is well known that addition of Ar in N2 plasma 
enhances the electron temperature, electron number density, 
concentration of active species through Penning excitation and 
ionization [12], [13]. Moreover, it is noticeable that the 
addition of Ar in N2 plasma serves as a catalyst enhancing the 
concentration of active species of N2 and increasing the 
reactivity of silicon with N2 plasma species to form nitrides 
[14], [15].  

The present work highlights the importance of sputtering 
gas (Ar) concentrations on the kinetics of layer growth. 
Structural, morphological and compositional properties of the 
nitrided layer are examined in terms of their crystal structure, 
chemical bonding, and surface morphology. The role of 
sputtering gas on crystallite size and residual stress of silicon 
nitrided thin films is also investigated. 

II. EXPERIMENTAL SETUP 

In order to study the influence of Ar concentration in N2-Ar 
plasma on the nitrided layer properties, the Si samples are 
nitrided in a stainless steel chamber by using pulsed DC glow 
discharge technique. Fig. 1 shows the schematic arrangement 
of pulsed DC glow discharge system. The chamber consists of 
two movable parallel electrodes having a diameter of 9.5 cm 
and thickness of 1.9 cm. The upper electrode serves as anode, 
whereas the lower electrode serves as cathode (sample holder). 
The chamber is evacuated down to 10-2 mbar pressure by 
using rotary vane pump prior to filling the N2-Ar gases. The 
inter-electrode distance (3 cm), pressure (2 mbar) & power 
(175 W) are kept constant throughout the experiment.   

By applying pulsed-DC power to the upper electrode 
(anode), glow discharge is produced. The pulsed DC power is 
obtained by using 50 Hz AC power source, step-up 
transformer and bridge rectifier. The plasma is excited in an 
abnormal glow regime using various ratios of Ar & N2.  

To control the input current and voltage within the 
discharge, voltmeter and ammeter are used. There is no need 
of auxiliary heater as the sample is being heated up by the 
bombardment of cathodic energetic atoms, molecules, ions 
and radicals of N2 which may be controlled by increasing the 
Ar concentration in N2-Ar plasma.  

Silicon substrates having dimension 1cm × 1cm and 
thickness 0.3 mm are placed on the cathode (substrate holder) 
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IV. CONCLUSIONS 

The present work highlights that the active species 
generations (argon as sputtering gas) play an important role in 
the nitriding of silicon using 100 Hz pulsed DC glow 
discharge. The XRD results confirm the formation of Si3N4 
films. The intense polycrystalline Si3N4 film is formed at 40% 
N2 and 60% Ar plasma. The FTIR result highlights the 
formation of asymmetric Si3N4 film and the bond strength 
between Si and N species strongly depends on argon 
concentration in N2-Ar plasma. The OM microstructure 
reveals the formation of nodules which are associated with the 
nucleation and growth of the nitrided layer. The SEM 
microstructure results show the formation of hills of nano-
clusters of Si3N4 films. The AFM images relate the surface 
roughness of the nitrided layers formed for different Ar 
concentrations in N2-Ar plasma. The peak–to-valley height 
(166.21 nm) is maximum for 60% Ar concentration. It is 
concluded that the crystallinity, crystallite size, residual 
stresses, bond strength, surface morphology, particle shape 
and size, particle distributions, formation of hills of clusters 
and cluster of nanoparticles are associated with Ar 
concentration in N2-Ar plasma. Up to 60% Ar concentration in 
N2-Ar plasma is most suitable for the nitriding of silicon due 
to the production of large number of active species and higher 
temperatures are achieved. 
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