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Abstract—Osteoarthritis affects a lot of people worldwide. Local 

injection of glucosamine is one of the alternative treatment methods 
to replenish the natural lubrication of cartilage. However, multiple 
injections can potentially lead to possible bacterial infection. 
Therefore, a drug delivery system is desired to reduce the frequencies 
of injections. A hydrogel is one of the delivery systems that can 
control the release of drugs. Thermo-reversible hydrogels can be 
beneficial to the drug delivery system especially in the local injection 
route because this formulation can change from liquid to gel after 
getting into human body. Once the gel is in the body, it will slowly 
release the drug in a controlled manner. In this study, various 
formulations of Pluronic-based hydrogels were synthesized for the 
controlled release of glucosamine. One of the challenges of the 
Pluronic controlled release system is its fast dissolution rate. To 
overcome this problem, alginate and calcium sulfate (CaSO4) were 
added to the polymer solution. The characteristics of the hydrogels 
were investigated including the gelation temperature, gelation time, 
hydrogel dissolution and glucosamine release mechanism. Finally, a 
mathematical model of glucosamine release from Pluronic-alginate-
hyaluronic acid hydrogel was developed. Our results have shown that 
crosslinking Pluronic gel with alginate did not significantly extend 
the dissolution rate of the gel. Moreover, the gel dissolution profiles 
and the glucosamine release mechanisms were best described using 
the zeroth-order kinetic model, indicating that the release of 
glucosamine was primarily governed by the gel dissolution. 

 
Keywords—Controlled release, drug delivery system, 

glucosamine, Pluronic® F-127, thermoreversible hydrogel. 

I. INTRODUCTION 

STEOARTHRITIS is one of joint diseases that affects 
more than 27 million people worldwide. The symptoms 

of osteoarthritis lead to difficulty in doing daily routine 
activities such as joint pain, loss of movement, and so on. If 
osteoarthritis still remains after the medication, physicians 
often recommend the replenishment of natural lubrication of 
cartilage using two popular supplements, which are 
chondroitin and glucosamine [1].  

Recently, there are two dosage forms of glucosamine: oral 
tablet and solution for local injection. Although the oral 
dosage form is more popular, there is no proof of how much 
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the drug gets to the target site [2]. Thus, the local injection of 
glucosamine can better solve the target-goal problem. 
However, most of the patients do not prefer to take 
glucosamine by this route, because of inconvenience of 
administration due to the requirement of doctor’s visit, pain, 
and so on. Moreover, the patients need multiple injections 
which can potentially lead to the possible bacterial infection. 
As a result, a local delivery system that can extend the release 
of an active therapeutic agent is desired. 

A hydrogel has been widely used in many medical 
applications, especially in the drug delivery. One of the 
important characteristics of the hydrogel is its thermo-
reversibility. A drug mixed with hydrogel can be locally 
administered into the body in the liquid form. Once inside the 
body, the liquid mixture is warmed up to 37 °C and solidified 
into a gel, slowly releasing the encapsulated drug to the target 
site [3]. Pluronic® F-127, a triblock copolymer of PEO-PPO-
PEO, has been widely used in many studies to control the drug 
release. More importantly, Pluronic® F-127 has already been 
proven by FDA to be used for injectable drugs [4]. To date, 
there is no study on the controlled release of glucosamine 
from a hydrogel. It would be interesting to investigate the 
potential use of hydrogel for the sustained release of 
glucosamine. 

In this study, various formulations of Pluronic-based 
hydrogel were synthesized for the controlled release of 
glucosamine. Each formulation contained various 
concentrations of alginate, and hyaluronic acid. Alginate was 
used to slow down the dissolution rate of the gel [5], while 
hyaluronic acid could be broken down into small units of 
glucosamine. Hence, higher glucosamine delivery was to be 
expected. In addition, the physical properties of the hydrogels 
were characterized including gelation temperature, its 
morphology and hydrogel dissolution. A study on the release 
of glucosamine from the selected hydrogel formulations was 
also carried out, and these experimental data were used to 
develop a mathematical model to understand the mechanism 
of the drug release. 

II. MATERIALS AND METHODS 

A. Preparation of Pluronic-F127 Based Hydrogel 

Pluronic® F-127 stock solution at 30% w/v was prepared by 
dispersing 6 g of Pluronic® F-127 in 20 ml of PBS at pH 7.4. 
Next, a magnetic stirrer was used to mix the solution for 24 
hours at 4 °C. Then, the solution was continued to be stored in 
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the refrigerator to obtain the completely dissolved polymer. 
Afterwards, alginate, hyaluronic acid, and glucosamine were 
mixed with the Pluronic solution at room temperature. For the 
formulation containing alginate, 0.5% CaSO4 solution was 
required to initiate the cross-link reaction. The composition in 
each formulation is shown in Table I (using ¼ factorial 
design). Each formulation was kept in at 4 °C until use.  

 
TABLE I 

COMPOSITION OF EACH FORMULATION (% W/V) 

Formulation PF-127 Alg HA GluN CaSO4

F0 25% 0% 0% 0% 0% 

F1 25% 1% 0% 0% 0.2% 

F2 25% 0% 0% 10% 0% 

F3 25% 0% 0.1% 0% 0% 

F4 25% 1% 0.1% 10% 0.2% 

Note that PF-127 = Pluronic® F-127, Alg = alginate, HA = hyaluronic acid, 
GluN = glucosamine. 

B. Thermoreversibility of Pluronic-Based Hydrogels 

The thermoreversible properties of the pluronic-based 
hydrogels were assessed using their gelation temperature and 
their gelation time at 37 °C. Briefly, the hydrogel solution was 
placed in a test vial and immersed in an ice bath for 20 
minutes. After that, the temperature of the solution was 
increased in a 1 °C increment. The gelation temperature of the 
hydrogel was determined by using a tube inversion method, 
based on flow or no flow of the solution after the vial was 
inverted for 2 minutes. For the determination of the gelation 
time at 37 °C, the liquid formulations were maintained at 4 °C 
for 20 minutes. Then, the solution was suddenly immersed in a 
37 °C water bath. The time at which the solution solidified 
was recorded as the gelation time.  

C. Morphology of Pluronic-Based Hydrogels 

Scanning electron microscopy (SEM) was used to 
investigate the morphology of Pluronic-based hydrogels. Due 
to high water content in the gels, the hydrogels were frozen at 
-20°C and dried by a vacuum pump. The samples were, then, 
sputtered with gold before the SEM observation. 

D. Dissolution of Pluronic-Based Hydrogels 

Initially, the gel solution was placed in a glass vial and 
weighed. Phosphate buffered saline (PBS) was added into the 
vial to allow the hydrogel to dissolve into the PBS solution. At 
specific time points, the solution was discarded and the sample 
vial was weighed to estimate the mass loss of the hydrogels, 
before replenishing with the fresh PBS. This procedure was 
repeated until the hydrogels were completely gone. 

E. Release of Glucosamine from Pluronic-Based Hydrogels 

The glucosamine release experiment was similar to that of 
the hydrogel dissolution study. The difference was that the 
PBS solution would contain glucosamine released from the 
hydrogels. The amount of released glucosamine was 
determined against a calibration curve constructed using a 
colorimetric assay. Briefly, glucosamine was allowed to 
transform into a color product in the presence of ninhydrin at 
100 °C. After 5 minutes, the reaction was terminated by 

reducing the temperature to 5 °C. The absorbance of the color 
product was measured at 570 nm by using a 
spectrophotometer [6].  

F. Mathematical Modeling of Glucosamine Release 

Several mathematical models were used to describe the 
mechanism of drug release including [7]: 
 Zeroth-order model: The drug release is constant over 

time. 
 

௧ܯ ൌ ܯ   (1)                             ݐܭ
 
where, Mt = the amount of drug in the solution at time t, M0 = 

the initial amount of drug in the solution, K = the zero-order 
release constant, t = time. 
 First-order model: The release rate depends on the drug 

concentration 
ௗ
ௗ௧

ൌ െ(2)                           ݐܭ 

 
 Hixson-Crowell Cube-Root model describes the release 

system that changes according to the changes in its 
surface area. 
 

ܯ

భ
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 Higuchi model: This model is based on the hypotheses 

that (1) initial drug concentration in the matrix is higher 
that its solubility, (2) drug diffusion takes place in 1 
dimension, (3) matrix swelling and dissolution are 
negligible, and (4) a perfect sink condition in the release 
environment is assumed. 

 
௧ܯ ൌ  ଵ/ଶ                             (4)ݐܭ
 

 Korsmeyer-Peppas model describes a drug release from 
polymeric systems. 

 
ெ

ெಮ
ൌ                               (5)ݐܭ

 
where, ܯஶ is the amount of released drug at t = ∞. 
 

TABLE II 
GELATION TEMPERATURE AND GELATION TIME AT 37°C OF EACH 

FORMULATION 

Formulation 
Gelation 

Temperature 
Gelation Time 

at 37°C 

F0: 25% PF-127 19 – 20 °C 50 – 60 s 

F1: 25% PF-127 + 1% Alg 17 – 18 °C 40 – 50 s 

F2: 25% PF-127 + 10% GluN 14 – 15 °C 40 – 50 s 

F3: 25% PF-127 + 0.1% HA 23 – 24 °C 80 – 90 s 

F4: 25% PF-127 + 1% Alg + 
0.1% HA + 10% GluN 

14 – 15 °C 40 – 50 s 

Note that PF-127 = Pluronic® F-127, Alg = alginate,  
HA = hyaluronic acid, GluN = glucosamine 

G. Statistical Analysis 

All the experiments in this study were performed in 
triplicate (n = 3) and the data were presented as mean ± 
standard deviation. An unpaired Student’s t-test was used to 
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evaluate the mean differences of the mean values. A 
statistically significant difference was defined at the 95% 
confidence level and a p < 0.05 was considered significant. 

III. RESULTS AND DISCUSSION 

A. Thermoreversibility of Pluronic-Based Hydrogels 

The thermoreversibility of the hydrogel was assessed as the 
gelation temperature and the gelation time at 37°C. The 
gelation temperature is defined as the temperature at which the 
solution is solidified. Even through Pluronic has been 
previously shown to exhibit phase transition at a specific 
temperature, changing its concentration and addition other 
components into the mixture would shift the phase transition. 

In general, hydrophilic molecules increased the gelation 
temperature of the hydrogel [8]. All of API (Active 
Pharmaceutical Ingredient) and excipients were hydrophilic 
molecules. According to Table II, additional substances, such 
as glucosamine and alginate, reduced the gelation temperature 
while hyaluronic acid increased the gelation temperature. 
Cross-linking Pluronic with alginate might have reduced the 
distance between each Pluronic micelle, leading to a tight 
structure of micellar network and easy formation of a gel 
matrix [9]. Although lower gelation temperature may not be 
desirable as these formulations would be more difficult to 
handle, the changes in the gelation temperature were not 
sufficiently significant to become problematic. 

 

Fig. 1 Dissolution Profile of Each Formulation 
 

All formulations displayed very fast transition to gels 
(Table II). The liquid hydrogel solidified into a gel in only 90 
seconds. This result indicates the potential use of Pluronic®-
F127 hydrogels as drug delivery vectors. The hydrogel will be 
administered as liquid but it will be immediately turned to a 
gel once it gets into the human body, allowing for the direct 
localization of the drug. 

 
TABLE III 

VARIOUS KINETIC MODELS DESCRIBING THE DISSOLUTION RATE OF EACH FORMULATION 

Formulation 
Zeroth-order First-Order Hixon-Crowell Higuchi Korsmeyer-Peppas 
K 

(g/h) 
r2 

K 
(h-1) 

r2 
K 

(g1/3/h) 
r2 

K 
(h-1) 

r2 
K 

(h-n) 
r2 

F0: 25% PF-127 0.13 0.9919 0.16 0.8393 0.07 0.7717 0.58 0.8898 1.11 0.9987 

F1: 25% PF-127 + 1% Alg 0.15 0.9948 0.15 0.8952 0.06 0.7991 0.54 0.9469 0.80 0.9974 

F2: 25% PF-127 + 10% GluN 0.23 0.9955 0.29 0.9766 0.18 0.8764 0.57 0.9175 0.99 0.9981 

F3: 25% PF-127 + 0.1% HA 0.14 0.9998 0.21 0.9064 0.08 0.7928 0.49 0.9181 1.01 0.9996 
F4: 25% PF-127 + 1% Alg + 

0.1%HA + 10% GluN 
0.36 0.9914 0.64 0.8714 0.24 0.7521 0.69 0.8788 1.01 0.9927 

Note that PF-127 = Pluronic® F-127, Alg = alginate, HA = hyaluronic acid, GluN = glucosamine, K = Rate constant 
 
B. Dissolution of Pluronic-Based Hydrogels 

The previous studies have shown that the release of drugs 
from a Pluronic gel is primarily governed by the gel 
dissolution mechanism [10]. As a result, the kinetics of the gel 
dissolution was thoroughly studied. The amounts of the 
dissolved hydrogel were collected and the plots of the 
dissolution curves were constructed using various well-known 
theoretical models described in the previous section. 

Fig. 2 shows the dissolution profile of each formulation. 
Clearly, the gels constantly dissolved over time. It took almost 
14 hours to completely dissolve Pluronic gel at 25% w/v. 
Adding 1% alginate could slightly extend the dissolution 
duration to about 15 hours, as alginate and CaSO4 acted as a 
crosslinking agent, rendering a more tightly packed network of 
micelles [9]. As a result, this formulation was more difficult to 
be dissolved. Interestingly, the gels with glucosamine 
(formulations: F2 and F4) dissolved much faster than the gels 
without glucosamine. With a hydrophilic component, the 

hydrogels became more water favorable, allowing the water 
molecules to diffuse into the gel, untangle the micellar 
network, and dissolve the gel into the water phase [11].  

The data of the gel dissolution were fitted with several 
kinetic models including the zeroth-order model, the first 
order model, Hixson-Crowell cube-root model, Higuchi 
model, and Korsmeyer-Peppas model (Table III). Only the 
zeroth-order model and Korsmeyer-Peppas model yielded the 
highest coefficient of determination (r2) of around 0.9914 - 
0.9995, indicating that the kinetics of the gel dissolution could 
be best described by these two models. For Korsmeyer-Peppas 
model, n values are more than 0.89, indicating that the model 
can be simplified as the zeroth-order mechanism [12]. 
Therefore, the hydrogels were dissolved constantly over time 
and the slope of the dissolution curve represented the 
dissolution rate of each formulation [13]. According to the 
zeroth-order kinetic model, F4 formulation has the highest 
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IV. CONCLUSION 

In this study, we investigated the potential use of Pluronic-
based hydrogels as a delivery vehicle to provide the sustained 
release of glucosamine for the treatment of osteoarthritis. 
Various formulations were developed containing 25% 
Pluronic as a base, 1% alginate and CaSO4, as cross-linking 
agents, and 0.1% hyaluronic acid. All formulations exhibited 
the thermoreversible property. The gelation temperature of the 
hydrogels decreased when alginate and glucosamine were 
added. On the other hand, the gelation temperature increased 
with the presence of hyaluronic acid in the gel. Lower gelation 
temperature resulted in a faster gel formation at 37 °C. The 
formulation that contained alginate could extend the release 
period of glucosamine, while hyaluronic acid reduced the 
duration of glucosamine release. Although alginate displayed 
longer release time, the hydrogel showed undesirable 
appearances to be used as an injectable drug. Therefore, the 
formulation without alginate and hyaluronic acid was 
preferred. The kinetics of glucosamine release from each 
formulation was best fitted with the zeroth-order model and 
Korsmeyer-Peppas model. Because of high n values in the 
Korsmeyer-Peppas model, the glucosamine release from all 
formulations could be modeled by using the zeroth-order 
kinetic model for simplicity.  
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