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Abstract—The correct estimation of reference evapotranspiration 

(ETₒ) is required for effective irrigation water resources planning and 
management. However, there are some variables that must be 
considered while estimating and modeling ETₒ. This study therefore 
determines the multivariate analysis of correlated variables involved 
in the estimation and modeling of ETₒ at Vaalharts irrigation scheme 
(VIS) in South Africa using Principal Component Analysis (PCA) 
technique. Weather and meteorological data between 1994 and 2014 
were obtained both from South African Weather Service (SAWS) 
and Agricultural Research Council (ARC) in South Africa for this 
study. Average monthly data of minimum and maximum temperature 
(°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were 
the inputs to the PCA-based model, while ETₒ is the output. PCA 
technique was adopted to extract the most important information 
from the dataset and also to analyze the relationship between the five 
variables and ETₒ. This is to determine the most significant variables 
affecting ETₒ estimation at VIS. From the model performances, two 
principal components with a variance of 82.7% were retained after 
the eigenvector extraction. The results of the two principal 
components were compared and the model output shows that 
minimum temperature, maximum temperature and windspeed are the 
most important variables in ETₒ estimation and modeling at VIS. In 
order words, ETₒ increases with temperature and windspeed. Other 
variables such as rainfall and relative humidity are less important and 
cannot be used to provide enough information about ETₒ estimation 
at VIS. The outcome of this study has helped to reduce input variable 
dimensionality from five to the three most significant variables in ETₒ 
modelling at VIS, South Africa. 
 

Keywords—Irrigation, principal component analysis, reference 
evapotranspiration, Vaalharts. 

I. INTRODUCTION 

ATER is the most crucial natural resource required for 
human survival, health and sustainable development. 

Water is also the scarcest natural resource on the earth because 
only 1% of the global water is available as freshwater [1]. The 
existence and survival of human being is solely dependent on 
water especially for domestic, industrial, energy and 
agricultural use [2]. South Africa falls within the semi – arid 
region, where the evaporation rate is more than the 
precipitation rates [3] and therefore, it is crucial to develop 
tools and models for the accurate estimation of water use and 
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water availability. 
Evapotranspiration (ET) has been described as the second 

most important component in the hydrologic cycle. It replaces 
the vapor lost to the atmosphere through condensation, thereby 
aiding the continuity of rainfall within the cycle [3]. ET is a 
very important component of hydrology, agriculture, 
meteorology and climatology because it is required for 
minerals and nutrient transport for plant growth [4]. The 
estimation of ET in the arid and semi-arid regions are very 
difficult because there are limited datasets of the variables that 
makes up ET. In many developing countries around the world, 
data are limited and scarce. Hence, there is a need to find the 
correlation between the variables in order to determine the 
most significant variables affecting the estimation and 
modeling of ET. 

ET rate from a reference surface is called the reference ET 
and denoted by ETₒ [5], [6]. Estimation of ETₒ is vital to the 
sustainability of water resources management practices around 
the world. The Food and Agriculture Organisation (FAO) of 
the United Nations approved the Penman-Monteith (PM) 
equation, which is popularly called FAO-56 method, as one of 
the most accurate method for estimating ETₒ [6]. This method 
has the capacity to calculate ETₒ at different time steps as 
decided by the user. The FAO-56 method requires climatic 
variables such as sunshine hour, wind-speed, relative 
humidity, solar radiation, average temperature as inputs. A 
major limitation to the successful use of this FAO-56 equation 
in developing countries like South Africa is non-availability or 
limited data sets of these required variables. It is therefore 
important to develop simulation models as an alternative way 
of estimating ETₒ. In the process of developing models for 
estimating ETₒ, it is imperative to determine a-priori the 
correlation and relationship between the variables that makes 
up ETₒ, hence, PCA is adopted in this study. 

PCA is a powerful tool that has been widely used for the 
multivariate analysis of correlated variables [7]. PCA aims at 
extracting the most important information from the data set. 
Additionally, it is used to compress the size of the data set by 
keeping only the important information [8]. PCA rotates the 
original data space such that the axes of the new coordinate 
system point into the directions of highest variance of the data. 
The axes or new variables are termed principal components 
(PCs) and are ordered by variance. The first principal 
component (PC1) represents the direction of the highest 
variance of the data. The second principal component (PC2) 
accounts for most of the remaining variance under the 
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variance. And z1 is called the first principal component.  
The second principal component can be found in the same 

way by maximizing a2
TSa2 subject to the constraints a2

Ta2=1 
and a2

Ta1=0. This gives the second principal component which 
is orthogonal to the first one. Remaining principal components 
can be derived in a similar way. In fact coefficients a1,a2, ..... 
apcan be calculated from eigenvectors of the matrix S. Origin 
uses different methods according to the way of excluding 
missing values [18] 

PCA shows the correlation structure of a data matrix X, 
approximating it by a matrix product of lower dimension (T × 
P'), called the principal components (PC), plus a matrix of 
residuals (E). This can be formulated in (2) below. The term 

 '1 x  represents the variable averages; the second term, the 

matrix product  'PT  , models the structure; and the third 

term, E, contains the deviations between the original values 
and the projections. 

 

    EPTxX  ''1  (2) 
  

where, T is a matrix of scores that summarizes the X-variables 
(scores), and P is a matrix of loadings showing the influence 
of the variables on each score. 

The correlation matrix is calculated from (3). After that, the 
eigenvectors and eigenvalues are estimated, and then the 
eigenvalues are sorted in descending order [19]. The 
eigenvector with the highest eigenvalue (PC1) is the most 
dominant principle component of the data set. The second 
component (PC2) is computed under the constraint of being 
orthogonal to PC1 and to have the second largest variance. 
The functions pca and pcacov in MATLAB R2009b was used 
to perform the PCA and to estimate the variable loadings. 
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where, x  and y  are the sample means of X and Y; x  and

y  are the sample standard deviations of X and Y. 
In implementing PCA using MATLAB, the following 

processes were used; the size of the data was determined; the 
mean and standard deviation was calculated; the dataset was 
standardized by subtracting the sample data from each 
observation and then dividing by the sample standard 
deviation; the coefficient of the principal component and their 
respective variances are done by finding the eigenfunctions of 
the sample covariance matrix. The MATLAB code executed is 
as follows: 

 
function [signals,PC,V] = pca1(data)  
% PCA1: Perform PCA using covariance.  
% data - MxN matrix of input data  
% (M dimensions, N trials)  
% signals - MxN matrix of projected data  
% PC - each column is a PC  

% V - Mx1 matrix of variances  
[M,N] = size(data);  
% subtract off the mean for each dimension  
mn = mean(data,2);  
data = data - repmat(mn,1,N);  
% calculate the covariance matrix  
covariance = 1 / (N-1) * data * data’;  
% find the eigenvectors and eigenvalues  
[PC, V] = eig(covariance);  
% extract diagonal of matrix as vector  
V = diag(V);  
% sort the variances in decreasing order  
[junk, rindices] = sort(-1*V);  
V = V(rindices);  
PC = PC(:,rindices);  
% project the original data set  
signals = PC’ * data 
 
PCA was performed on a correlation matrix of six variables 

in the system which are: Rainfall, minimum temperature, 
maximum temperature, relative humidity, wind speed and ETₒ. 
Since the studied variables have different variances and units 
of measurements, the data set was standardized. This step was 
done by subtracting off the mean and dividing by the standard 
deviation. At the end of standardization process, each variable 
in the dataset is converted into a new variable with zero mean 
and unit standard deviation 

III. RESULTS AND DISCUSSIONS 

In this study, PCA was performed on a correlation matrix of 
six variables in the system; those are: rainfall, minimum 
temperature, maximum temperature, relative humidity, wind 
speed and ETₒ. Since the studied variables have different 
variances and units of measurements, the data set was 
standardized. This step was done by subtracting off the mean 
and dividing by the standard deviation. At the end of 
standardization process, each variable in the dataset is 
converted into a new variable with zero mean and unit 
standard deviation. The original and standardized variables are 
displayed in Figs. 2 and 3 respectively. 

The correlation between a variable and a PC is known as 
"loading". Loadings close to ± 1 indicate that the factor 
strongly affects the measured variable. Components 
represented by the high loadings can be taken into 
consideration in evaluating the system. In this study, loadings 
having an absolute value > 0.40 were considered for grouping. 

As listed in Table I, 82.67% of the information (variances) 
contained in the dataset were retained by the first two 
principal components (i.e. PC1 and PC2). However, each of 
the other remaining PCs has an eigenvalue lower than 1; thus 
only the first two PCs will be used in this study for 
interpretation. 
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significant ones before adequate and further simulation 
modeling operations takes place in a bit to estimate ETₒ at 
VIS, South Africa. 
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