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Abstract—The Flow Shop Scheduling Problem (FSSP) is a
typical problem that is faced by production planning managers in
Flexible Manufacturing Systems (FMS). This problem consists in
finding the optimal scheduling to carry out a set of jobs, which are
processed in a set of machines or shared resources. Moreover, all the
jobs are processed in the same machine sequence. As in all the
scheduling problems, the makespan can be obtained by drawing the
Gantt chart according to the operations order, among other
alternatives. On this way, an FMS presenting the FSSP can be
modeled by Petri nets (PNs), which are a powerful tool that has been
used to model and analyze discrete event systems. Then, the
makespan can be obtained by simulating the PN through the token
game animation and incidence matrix. In this work, we present an
adaptive PN to obtain the makespan of FSSP by applying PN
analytical tools.

Keywords—Flow-shop scheduling problem, makespan, Petri
nets, state equation.

I. INTRODUCTION

FMS is a discrete event dynamic system that is composed

of jobs and shared resources [1]. FMS engineers The
typical problem that engineers faced when they are either
designing a FMS or planning the master production plan for
the FMS, is how they should make the best sequence of jobs in
the FMS in order to carry all operations out in the minimum
time [2], [3]. This problem is called FSSP, which is a
combinatorial problem classified as NP-hard [4]. The
makespan is the time that all the jobs are processed in the
FMS, and it depends on the order that all the tasks are
performed.

There have been published several research papers about
finding the minimum value of makespan in the FSSP. For
instance, a D.S. Palmer proposed a method to find an
acceptable sequence in less time than exhaustive search [5].
Another algorithm based on heuristic strategies to find suitable
solutions was proposed in [6]. Dannenbring performed a
similar work, where he proposed eleven heuristics to solve the
FSSP [7]. Nawas proposed an algorithm based on the
assumption that jobs with higher processing time must be
treated first; his algorithm is applied to static and dynamic
sequencing environment [8]. In [9], Taillard applied taboo
search to solve FSSP; moreover, he implemented a parallel
version of taboo search to improve the algorithm execution
time. Framinan and Leisten proposed a heuristic taking into
account the optimization of partial schedules; instead of
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optimize the whole schedule [10]. Later, Framinan, Leisten
and Ruiz-Usano proposed two multi-objective heuristics,
whose objectives to solve are makespan and flowtime
minimization [11].

Several metaheuristics have been used to find the minimum
value for the makespan, such as Simulated Annealing [12],
[13]; Taboo Search [14], [15]; Genetic Algorithms [16]-[18];
Ant Colony Optimization [19]-[20]; Iterated Local Search
[21]; and Particle Swarm Optimization Algorithms [22], [23],
[27]. These proposals can find reasonable results in less time
than exact methods. The main outcome of these methods is
that the global minimum could not be found; however, good
approximations are obtained in a short time. Thus, all of them
need a way to represent the FSSP in order to calculate the
makespan. FSSP modeling should be understandable and able
to calculate the makespan of a job operations sequence.

FMSs have been modeled via PNs in order to simulate and
analyze them. PN theory is adequate to represent in a
graphical and mathematical way Discrete Event Systems
(DES) such as FMSs, because their dynamic behavior based
on event occurrence can be modeled by PN elements (places
and transitions) [24]. Moreover, PN theory offers analytical
and graphical tools to study the modeled systems, based on the
relationship among the FMS resources denoted as PN
elements.

One important point in search methods is the calculus of the
makespan, taking into account a certain processing order of
the tasks. In this paper, we propose the use of an adaptive
timed PN to calculate the makespan taking into account the
PN state equation.

II.FSSP

Scheduling tasks in a FMS is a typical combinatorial
problem where it is needed to organize the processing of a set
of jobs divided in operations, and each operation is carried out
in a shared resource [25], [26].

In the FSSP, given the processing times pj« for each job j on
every machine k, and a job sequence S = (1, S, ..., Sn) Where n
jobs (j =1, 2, ..., n) will be processed by m machines (k = 1,
2, ..., m), so the aim of FSSP is to find a sequence order for
operation processing with the minimum value for the
makespan. For instance, Table I shows a FMS with three
machines, four jobs, and each job has three serial operations.

III. PNSs CONCEPTS

A PN is a graphical and mathematical tool that has been
used to model concurrent, asynchronous, distributed, parallel,
non-deterministic, and/or stochastic systems.
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TABLEI
FMS CONFIGURATION WITH OPERATION TIMES

Operation Serial Number

Items Jobs
M, M, M;
Ji 96 90 35
Operation Jy 74 57 91
time Jy 13 5 7
Jy 71 23 38

The graph of a PN is directed, with weights in their arcs,
and bipartite, whose nodes are of two types: places and
transitions. Graphically, places are depicted as circles and
transition as boxes or bars. PN arcs connect places to
transitions or transition to places; it is not permissible to
connect nodes of the same type. The state of the system is
denoted in PN by the use of tokens, which are assigned to
place nodes.

A formal definition of a PN is presented as follows [24]: A
PN is a 5-tuple, PN = (P, T, F, W, Mg) where:

e P={pi,p2 ..., pm} is a finite set of places,

o T={t, ...t} is a finite set of transitions,

e Fc {PxT}u/{TxP}isasetofarcs,

e W=F > {l1,2,3,...} is a weight function,

e Moy=P—{0,1,2,3,...} is the initial marking,

o PNAT=Q@andPUT#J.

The token movement through the PN represents the
dynamical behaviour of the system. In order to change the
token position, the following transition firing rule is used [24]:
1. A transition t € T is enabled if every input place p € P of

t has w(p,t) tokens or more. w(p,t) is the weight of the arc
fromp to t.

2. An enabled transition t will fire if the event represented
by t takes place.

3. When an enabled transition t fires, w(p,t) tokens are
removed from every input place p of t and w(t,p) tokens
are added to every output place p of t. w(t,p) is the weight
of the arc from t to p.

A Timed Place Petri Nets (TPPN) is an extended PN, where
a new element is added. It is a six-tuple TPPN = {P, T, F, W,
Mo, D), where the first fifth elements are similar to PN
definition presented above, and D = {di, d>, ..., dn} denotes
the time-delay for each place p; € P [28]. Output transitions t;
for each p; will be enabled once the time indicated in pj is
reached.

A. Analysis Methods

In this paper, we are applying the matrix equation approach
as the analytical method of PN theory in order to calculate de
makespan of the FMS modelled.

B. Incidence Matrix and State Equation

A PN with n transitions and m places can be expressed
mathematically as an n x m matrix of integers A = [a;]. The
values for each element of the matrix are given by: aj; = a;j" -
aij, where ajj” is the weight of the arc from tj to pj, and ajj” is
the weight of the arc from pj to t;.

The state equation is used to determine the marking of a PN
after a transition firing, and it can be written as:

Mk = M1 x ATUy, k=1,2,... (1

where Ux is a n x 1 column vector of n - 1 zeros and one
nonzero entries, which represents the transition tj that will fire.
The nonzero entry is located in the position j of Uk AT is the
transpose of incidence matrix. My.1 is the marking before the
firing of t;. And Mk is the reached marking after the firing of {;
denoted in Uy.

IV. ADAPTIVE TIMED PLACE PN

In this paper we apply an adaptive TPPN (ATPPN), which
adds some arcs according to tasks sequence of the FMS.

The formal definition of an ATPNN is as follows: An
ATPNN is a seven-tuple (P, T, F, W, Mo, D, Fq), where the
first six elements are similar to TPNN elements, and the last
one, Fy, is the set of dynamic arcs that change depending on
the job operations order. Fg < {P xT} U {T xP}. Fn Fq=&.

A. One Operation Modeling

The ATPNN to model one operation Ojx of a job Ji
processed by machine My is depicted in Fig. 1.

Fig. 1 Operation Oijk processed by machine Mk denoted as a PN
model

ts tf

B. One Job Modeling

As we mentioned above, one job J; is composed of
operations Oij, so the PN model for each Jj is a concatenation
of its operations Ojy (Fig. 2).

t t2 t3 ta tn-1 tn

Fig. 2 Operations Oijk of job Ji processed by machines Mk denoted as a PN model
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C.FMS Modeling

In order to model the whole FMS, we add the PN structure
for each job Ji and connect every My place with its
corresponding input (output) transition from (to) operation
Oij. Fig. 3 shows the PN model for the FMS described in
Table 1.

In Fig. 3, each column corresponds to each job Ji, and some
places have a label d, which denotes the time delay for
processing an operation Ojj in the connected machine M.

D.Algorithm to Convert a TPPN into an ATPPN

At this time, PN model of Fig. 3 only represents the FMS,
but it is also necessary to set the priority in the operations
processing by means of arcs connection in the PN model. So,
we need to define the elements of Fq to denote this priority.

First of all, the operations sequence is defined in a row
vector OS = [0S; 0S; 0Sixj], where each OS value
corresponds to one operation Ojk. The following algorithm
receives as inputs the row vector OS and the TPPN model, as
output of the algorithm we obtain the ATPPN.

J1 J2 J3 Ja

Fig. 3 PN model for the FMS described in Table I

Algorithm TTPN_into_ATPPN
Input: TPPN, OS
Output: ATPPN

1. For g=1 to ixj
k = machineOf(0S(q))
add(Mo(k) ,0S(a))

End For

2. For k = 1 to NumberOfMachines
For i = 1 to NumberOfJobs — 1

p1 = placeOfF(Mo(k, 1))
p2 = placeOfF(Mo(k, i+1))
t = p2°

t = *p2
ps = "tz
W(t1, ps) = 1
W(ps, t2) = 2
End For
End For

In Step 1, a kxi matrix called Mo is created. Operations 0S €
OS (Oj) carried out by the same machine M are added in the
row k of Mo. The sequence order for the same machine is
taking into account. In Step 2, new arcs (t,p) € Fq are created,
which connect output transitions of places representing
operations Ojj with the input place of next operation Ojj in the
sequence order defined in Mo. Moreover, a value 2 is assigned
to weight W(ps,tz), to assure the order in the operations
processing.

To illustrate the algorithm result, Fig. 4 shows the ATPPN
obtained, based on the operations denoted in Fig. 3 and
following the order: OS = [01\]2, 01\14, 02J2, O1J3, 02\]4, 01\]1,
O3J2, O3J3, OzJ], O3J1, OzJ}, O3J3].

The ATPPN model presented in Fig. 4 is used to calculate
the makespan for the sequence defined in vector OS.

V.ALGORITHM TO OBTAIN THE MAKESPAN

The proposed algorithm takes into account the
mathematical representation of the ATPPN. In particular, the
incidence matrix and the state equation are utilised to obtain
the time delay for each Oj.

As input data the algorithm needs the ATPPN which
includes its input arcs matrix (a;), the output arcs matrix (a;"),
the time delays column vector D, and the initial marking M,
the total number of jobs (nj), the total number of operations
per job (n0), and the total number of shared machines (nm).

O -0 O O

Fig. 4 ATPPN model obtained applying the algorithm
TTPN_into_ATPPN
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Algorithm Calculate Makespan
Input: ATPPN, aj;~, ai;*, D, Mo, nj, no, nm
Output: makespan

1. Initialise variables:
txj = |T| 7 nj
pxj = (IP] - nm) / nj
AT = [0 0 .. O] |pI x1
TV = [0 O .. O] 1 x (i)
2. ET = enabledTransitions(Mo, aij’)
. Vet € ET, Uk (et) = 1
. While |ET] >0
For each t € ET
indexT = ceil(t/txj)
Ukemp" = [0 O .. O] y71 x1
Uktmp(t) =1
t = D" x (aij)" x Uktmp
Taccum = AT” x (aij_)' x UKtmp
max_taccum = Max(TV(indexT), taccun/2) + 7
For each p € t
indexP = ceil(p/pxj)
If indexT == indexP
TV(indeXP) = Taccum
Else
AT(p) = Taccum
End if
End For
End For
Mi = Mia + (aij)" * Uk
ET = enabledTransitions(Mi, aij’)

B~ W

UKT = [0 0 .. 0] 711 x1
vet € ET, Uk(et) =1
End While

5. makespan = max(TV)

In step 1, four variables are initialised: the number of
transitions per job (txj), the number of places per job (pxj), a
column vector AT to assign the accumulative time for each
place, and a row vector TV utilised to save the time used for
each job. Step 2 obtains the enabled transitions (ET) for an
initial marking Mo. Step 3 creates the UK vector from ET
transitions. Step 4 makes an iterative process while the
ATTPN is alive, i.c., while there exists at least one enabled
transition in the current marking. So, for every enabled
transition t, we identify the job Ji where the transition belongs
(indexT), initialise a temporal UK (Ukunp) to fire transition t.
The time delay t corresponding to current operation Ojj is
calculated multiplying the transpose of the time delay vector
D’ by the transpose of the input arcs matrix (ajj), and the
result is multiplied by the firing vector Ukmp taking into
account only transition t.

The time accumulated, denoted as Tyccum, represents the
time that the needed machine M has been busy previous to the
current operation Ojjk. And it is calculated in a similar way that
T, but in this case we use an auxiliary vector AT where the
accumulative time for each place is stored, instead of the time
delay vector D. Then, we compare both times, the time when
the machine MK is ready and the time when the operation Oijk
is also ready to be processed. The maximum time plus the
time delay for operation Ojji is assigned to max Taccum. For
every p € t°, if p and t are in the same job line then max_Taccum
is assigned to the time vector variable TV. On the other hand,
if p and t belong to different job lines, max_Taccum is assigned
to the vector AT.

Finally, the ATPPN marking M; changes according to the
result of the equation state. From this new marking M;, the
new enabled transitions are assigned to vector ET and vector
Uk is generated from them.

VI. CONCLUSIONS AND FUTURE WORK

FSSP is a NP-hard problem that has been analysed applying
different kinds of techniques, such as exact models and
heuristics strategies. One important calculus in the FSSP is the
makespan value, which depends on the sequence of operations
for each job and the order of machine utilisation.

In this paper, we use a different way to calculate the
makespan by means of mathematical tools of PNs, such as the
equation state and the incidence matrix. Firstly, we describe an
algorithm to create an ATPPN from a FMS description. The
ATPPN arcs indicate the order in which operations Ojjx must
be done in each job. Moreover, arcs are connected adequately
to set the operations order for each machine. And secondly,
the marking evolution by using the state equation is taken into
advantage to calculate the makespan. We added a time delay
vector in order to consider the processing time for every
operation involved in the FMS, and it is included in the matrix
operations to be able to obtain the makespan for each job.

As future work, we are including these algorithms as part of
a study based on evolutionary computing. Moreover, we are
interested in analyse the feasibility of PN tools as part of a
heuristic to obtain de minimum makespan in the FSSP.
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