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A Method for Modeling Flexible Manipulators:
Transfer Matrix Method with Finite Segments

Haijie Li, Xuping Zhang

Abstract—This paper presents a computationally efficient method
for the modeling of robot manipulators with flexible links and
joints. This approach combines the Discrete Time Transfer Matrix
Method with the Finite Segment Method, in which the flexible
links are discretized by a number of rigid segments connected by
torsion springs; and the flexibility of joints are modeled by torsion
springs. The proposed method avoids the global dynamics and has the
advantage of modeling non-uniform manipulators. Experiments and
simulations of a single-link flexible manipulator are conducted for
verifying the proposed methodologies. The simulations of a three-link
robot arm with links and joints flexibility are also performed.

Keywords—Flexible manipulator, transfer matrix method,
linearization, finite segment method.

I. INTRODUCTION

IN the last decades, significant efforts have been devoted
to studying the flexible manipulators due to their

higher operational speed and higher payload-to-weight ratio
compared with conventional rigid manipulators. However,
flexible manipulators produce considerable deformations and
oscillations when operating at high speed. The flexible robots
are continuous dynamic systems with an infinite number
of degrees of freedom. Their dynamics are governed by
nonlinear coupled, ordinary and partial differential equations.
The exact solution of such systems does not exist. Therefore,
the complex dynamic equations are truncated to some finite
dimensional models. The modeling approaches in the literature
are mainly classified into several categories [1]: Assumed
Mode Method (AMM) [2], Finite Element Method (FEM) [3],
[4], Lumped Mass Method (LMM) [5] and Finite Segment
Method(FSM) [6].

In this paper, a computationally efficient method for
modeling flexible robots is presented. This method is based
on the Discrete Time Transfer Matrix Method (DT-TMM)
incorporated with Finite Segment Method (FSM). The FSM
was propsed in [7], assuming that a flexible beam is
composed by a certain number of rigid segments connected
by adjacent springs and dampers. Compared with FEM and
AMM, the FSM has the simplest mathematical formulation.
It has the advantage of modeling flexible multibody systems
with geometrical nonlinearity and material nonlinearity [7].
Compared with LMM, it offers more accurate results
considering the inertia of a body.

The Transfer Matrix Method was first proposed in the
1920s [8] used to solve one-dimension linear systems. Later
in 1950, TMM was used on more general vibration studies
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[9]. Nevertheless, the classical Transfer Matrix Method could
only deal with the elastic structure mechanics problems for
one-dimensional linear systems. The vibration characteristics
of linear multi-rigid-flexible systems and dynamics of general
multi-body systems are beyond its applicability. To handle
the problems, in the last decade, DT-TMM was developed,
including linear TMM of multi-body system [10], DT-TMM
of multi-body system [11] and TMM of controlled multi-body
system [12]. DT-TMM was combined with AMM for applying
on flexible systems in [13].

DT-TMM has several advantages that make it attractive
regarding the multi-body rigid and flexible systems. First
of all, the establishment of global dynamic equations for
modeling a system is not needed. DT-TMM describes systems
by multiplying corresponding transfer matrices of components.
This property makes the characterization of a system simple,
concise and straightforward. Another significant strength is
that the orders of the matrices involve in the calculation always
remain small regardless of the number of elements in the
model, which significantly increases the computational speed.

In this work, a method combining DT-TMM with FSM is
presented. This method combines the discretization modeling
strategy of the Finite Segment Method and takes advantages
of the computational efficiency of DT-TMM. Compared with
AMM based DT-TMM, the FSM-DT-TMM is superior in
modeling variable cross-section flexible links as well as
in modeling multi-flexible manipulator with joint flexibility.
In addition, the corresponding transfer matrices have more
concise formulations, and fewer transfer matrices are needed
to be defined. To validate this method, an experiment of a
single flexible link is performed. The experimental results well
agree with the numerical simulations. Moreover, this approach
is extended to model a three-link manipulator with links and
joints flexibility.

II. DYNAMIC MODELING OF A MANIPULATOR WITH
MULTIPLE FLEXIBLE LINKS AND FLEXIBLE JOINTS

The schematic of the structure of a planar manipulator with
n-flexible links and flexible revolute joints is presented in Fig.
1. This serial manipulator is actuated by individual motors.
No floating frame and no rotational matrix are needed in the
proposed method.

The following assumptions are considered in developing the
model of the n-link manipulator:

• The motion of the manipulator is assumed to be in the
horizontal plane. Therefore, gravitational body force is
not included, and deformations are only considered in
the horizontal direction.
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Fig. 1 A manipulator with multiple flexible links and flexible joints

• Each link is assumed to be long, slender beam. Thus, each
link complies with the Euler-Bernoulli beam theory.

• Each link has uniform material properties with constant
Young’s modulus and density, etc.

• The flexibility of links are modeled using the Finite
Segment Method(FSM).

• The flexibility of joints are modeled by linear torsion
springs.

• Physical damping and joint friction are not included in
the model.

The flexibility of links is modeled based on the finite
segment method introduced in [7]. The basic idea of FSM is to
divide a link into a certain number of discrete rigid elements
that are connected by springs and dampers. In this work, the
segments are only connected by torsion springs as shown in
Fig. 2, in which s1, s2, · · · sN−1 denote the torsion springs
and b1, b2, · · · bN−1 denote the rigid link elements. The angles
of the rigid beam elements with respect to the rigid motions
are marked by θ1, θ2 · · · θN in the global coordinate frame.
Δlj is the length of the jth segment link, wj and hj are the
width and height of it.

The equivalent spring coefficient for bending is derived as
[7]

Kj,j+1 =
2EjEj+1IjIj+1

EjIj+1Δlj + Ej+1IjΔlj+1
(1)

where Ej is Young’s modulus of the sub-link material, Ij is
the cross-section area moment of inertia of the jth link.

III. FSM-TMM OF A MANIPULATOR SYSTEM

In this section, the general concepts in DT-TMM are
introduced, and the modeling of an n-link manipulator
system based on FSM-DT-TMM is presented. The state
vectors provide all information about internal forces,
torques, displacements, orientation angles of certain points in
components [14]. For the general state vector of a rigid body
moves in a planar, it can be expressed as

�zj = [x, y, θ, m, qx, qy, 1]Tj (2)

where x, y and θ are position and orientation in the referenced
coordinate system, m, qx and qy are the internal moment and

internal forces in the same coordinate system, respectively.
The last term 1 in state vectors is for the external forces.

With the definition of the state vectors, the transfer equation
is introduced as

�zOj = Uj�z
I
j (3)

where Uj is the transfer matrix, �zIj and �zOj are the inboard and
outboard points of the component j, respectively. Instead of
establishing the global dynamic equations for the multi-body
systems, DT-TMM describes a system by expressing the
productions of the corresponding components. The transfer
matrix U denotes the relations of geometry and dynamics
between the inboard point and outboard point within a certain
element, as expressed in (3). Thus, a chain dynamic system
can be assembled by adding all the components. Then, we
obtain,

�zO = UnUn−1 · · ·U2U1�zI (4)

where, �zI and �zO are the boundaries of this system, U is
the transfer matrix of the corresponding element. All the
entries transfer matrices are based on the information from
previous time step. So at any time step ti, transfer matrices Uj ,
j = 1, 2 · · ·n are known. With the known entries in the state
vectors of the boundaries, the unknowns in the state vectors at
time step ti could be solved. Once we have the state vectors
values at time ti, using linearization techniques, the entries in
transfer matrices could be updated to next step ti+1. Repeat
the procedures, the dynamic states and geometric positions of
each component in this system can be obtained at any time
step. A major property of DT-TMM is that the order of the
system matrix always stays small, as it does not increase when
adding more components into the system. This feature reduces
computational time and storage requirements.

A. Linearization of Dynamic Equations

In order to obtain the transfer matrices for elements, the
Newmark-β method is adopted to linearize the corresponding
dynamic equations, as shown:

r̈(ti) = A(ti−1)r(ti) +B(ti−1)

ṙ(ti) = C(ti−1)r(ti) +D(ti−1)
(5)

where variable r represents the generalized position
coordinates x, y and the orientation angle θ, respectively.
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Fig. 2 Finite segment model of a flexible link

A(ti−1), B(ti−1), C(ti−1) and D(ti−1) are known functions
of other variables (r, ṙ, r̈) at time ti−1. Next, the Newmark-β
integration scheme [15] is applied to define A, B, C and D,
as listed in Table I.

TABLE I
COEFFICIENTS OF THE NEWMARK-β INTEGRATION SCHEME

Constant Linearlized expression
A 1

βΔ2

B 1
βΔT2 [−r(ti−1)− ṙ(ti−1)ΔT − ( 1

2
− β)r̈(ti−1)ΔT 2]

C γ
βΔ

D ṙ(ti−1) + (1− γ)r̈(ti−1)ΔT + γB(ti)ΔT

where ΔT = ti − ti−1 is the time interval, β and γ are the weighing
parameters on the Newmark-β integration and play a key role in the stability
and convergence of analysis.

Generally, the geometric positions of a component in
dynamic systems contain the trigonometric terms. Thus, the
linearization of trigonometric terms are described using Taylor
series expansion with truncation error of ΔT 2, that is

cos θ(ti) = − sin θ(ti−1)θ(ti) +G1 + o(ΔT 2)

sin θ(ti) = cos θ(ti−1)θ(ti) +G2 + o(ΔT 2)
(6)

where

G1 = cos θ(ti−1)

(
1− 1

2

(
θ̇(ti−1)ΔT

)2
)

+θ(ti−1) sin θ(ti−1)

G2 = sin θ(ti−1)

(
1− 1

2

(
θ̇(ti−1)ΔT

)2
)

−θ(ti−1) cos θ(ti−1)

Thus, A,B,C,D,G1 and G2 are defined as functions of
quantities from previous time step r(ti−1), ṙ(ti−1), r̈(ti−1).

B. Transfer Matrices of Elements Moving in Plane

The dynamics equations of the jth element can be linearized
using the numerical integration, and then be assembled into
a single transfer equation as expressed as (3). The moment
momentum balance and mass center motion equation for a
planar rigid body is given as in (7).

qx,I − qx,O + fx,C = ẍCm

qy,I − qy,O + fy,C = ÿCm

JI θ̈I +mxIC ÿ −myIC ẍ = −MI +MO +MC

+qx,OyIO − qy,OxIO − fx,CyIC + fy,CxIC

(7)

where qx,I , qy,I are internal forces on inboard. qx,O, qy,O are
internal forces on outboard. fx,C , fy,C are assumed external
forces acting on the mass center. m is the mass of the rigid
body and (xC , yC) is the mass center coordinate. qx,I , qy,I
are internal forces acting on the inboard and qx,O, qy,O are
internal forces acting on the outboard. MI , MO and MC

are the moments acting on the inboard, outboard and mass
center, respectively. JI is the rotation inertia about its inboard.
Linearize the dynamic equations and the transfer equation of
a planar rigid body can be written as

�zO = Urigid�zI (8)

where the �zI and �zO are its inboard and outboard state vectors.
The transfer matrix Urigid is expressed as

URigid =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 u1,3 0 0 0 u1,7

0 1 u2,3 0 0 0 u2,7

0 0 1 0 0 0 0
u4,1 u4,2 u4,3 u4,5 u4,6 u4,7

u5,1 0 u5,3 0 1 0 u5,7

0 u6,2 u6,3 0 0 1 u6,7

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

The components of the transfer matrix are listed in [16].
The transfer matrix for a linear torsion spring is

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 1

Kt
0 0 0

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where Kt is the coefficient of the elasticity of the torsion
spring.

The transfer matrix for a active joint is

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 1 0 0 0 θjointj

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where θjointj is the angle change provided by the joint.
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As illustrated in Fig. ??, describing the system by
assembling the transfer matrices of corresponding components
from inboard to the outboard of the system, we obtain the
overall transfer equation as

�zO = ULink.nUJoint,n · · ·ULink,2UJoint,2ULink,1UJoint,1�zI
(12)

where ULink is transfer matrix for the flexible link, and UJoint

is transfer matrix for the flexible or rigid joint.
Combine the DT-TMM with FSM; a flexible link is modeled

as serial multi-rigid links connecting by torsion springs.
Hence, the corresponding transfer equation for a flexible link
can be expressed as

ULink = UbNUsN · · ·Ub1 (13)

where transfer matrices of segment links Ub follow (9) and
spring coefficient of segment torsion springs Us are determined
from (1).

The algorithmic solving procedure of FSM-DT-TMM is
illustrated in a flow chart in Fig. 3. The entire process can
be repeated until it reaches the desired computational time.

Fig. 3 Flow chart of the algorithms of solution procedures

IV. NUMERICAL SIMULATIONS AND EXPERIMENTS

In this section, numerical simulations and experiment tests
are conducted to assess the validity of the proposed method.
A uniform cross-section area manipulator is considered.
Simulation and testing results from this case are compared
and discussed. Furthermore, FSM-DT-TMM is extended to

model a three-link flexible manipulator. The influence of the
joint flexibility and the manipulator vibration behavior is then
examined.

A. Simulation and Testing of a Single Flexible Uniform Link
Manipulator with Rigid Joint

The experimental set-up of a single flexible manipulator is
shown in Fig. 4. The system was built up for experimental
verification of the FMS-DT-TMM considering the single-link
flexible manipulator with uniform cross-section area moves
in the horizontal plane. This system was developed using
NI Labview real-time module and CompactRIO for real-time
control of the DC motor. This manipulator is composed of a
thin aluminum beam with parameters listed in Table II and a
DC motor. A strain gauge is mounted on the beam to find the
strain and thus the deflection of the manipulator.

If flexibility in the shaft is not considered, the system could
be modeled using two elements: An active rigid joint which
provides the required rotational motion and a flexible link
which can be divided into a certain number of rigid beams
connected by torsion springs.

TABLE II
PARAMETERS OF THE SINGLE-FLEXIBLE MANIPULATOR

Symbol Value Unit Parameters
L 0.252 [m] Length of beam
h 0.00048 [m] Height of beam
w 0.028 [m] Width of thebeam
E 7 · 109 [N/m2] Young’s modulus
ρ 2766 [kg/m3] Density

As seen in Fig. 2, following (12) for one flexible link
manipulator with a rigid joint, the overall transfer equation
is expressed as

�zO = ULinkUJoint�zI

ULink = UbNUsN · · ·Ub1

(14)

where ULink is the transfer matrix of the flexible beam.
Us is the transfer matrix of the equivalent torsion spring,
where its stiffness can be determined from (1). Ub is the
transfer matrix of a segment rigid link and it can be obtained
from (9). According to the definition of the state vectors and
boundary conditions of the system, the inboard and outboard
state vectors are

�zI(ti) = [0 0 0 m(ti) qx(ti) qy(ti) 1]T

�zO(ti) = [x(ti) y(ti) θ(ti) 0 0 0 1]T
(15)

where at the inboard, the position and orientation are known
and set to be 0. At the outboard boundary, no external forces
or moments acting on the tip of the manipulator. Hence the
last three terms in �zO are 0.

The dynamic model is simulated with integral parameters
β = 0.7 and γ = 0.8 which add algorithmic damping into the
simulation [17] for modeling the physical structure damping
in the system. The time step is ΔT = 0.002[s] which is the
data sample time step of the DC motor. The flexible link is
modeled by 60 segment rigid links.
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Fig. 4 Experimental setup of single flexible manipulator: (a)schematic diagram; (b)uniform cross-section area

Fig. 5 Schematic of the single link flexible robot with uniform cross-section
area, as shown in Fig. 4 (b)

Fig. 6 gives the comparison of results between simulation
and experiment. The angular motion of the single flexible
link manipulator is illustrated in Fig. 6 (a) and this angular
motion is used as the signal input for the simulation.
Fig. 6 (b) compares simulation and experimental results of
the manipulator deflection responses. Fig. 6 (c) shows the
comparison of the frequency response of the tip deflection
using Fast Fourier Transform. The vibration behaviors of
the system are clearly exposed in this plot, in which the
main peaks for experiment and simulation are 6.05[Hz] and
6.16[Hz] , respectively. The frequency response results show
that both the simulation and experiment are consistent in the
theoretical natural frequency which is 6.10[Hz].

From the comparison of the results, one can note that the
vibration behaviors in Fig. 6 (b) and the tip deformations
in Fig. 6 (c) show good agreement. Furthermore, as seen in
Fig. 6 (c), it indicates that the dynamics of the manipulator
system are characterized by several vibration modes. During
the rotating, the beam is subjected to the driven torques
and considered to be forced vibration. After the motor
stops, the residual vibration of the link is deemed to
be free vibration with clamped-free boundary condition.
With the given rotating angle, the numerical simulation
accurately performs the vibration characterizations under
different boundary conditions. It should be mentioned that
the model of FMS-DT-TMM of this single flexible link
manipulator is purely linear. The internal damping in the beam
and joint friction are not included in the simulation while
β = 0.8 and γ = 0.7 are used to introduce algorithmic
damping. To sum up, the simulation results regarding the
tip deformations and frequency responses are efficient and

accurate, and hence, it can be concluded that the proposed
method is validated in modeling a single flexible manipulator.

B. Simulation of a 3-Link Manipulator with Flexible Links
and Joints Moving in Plane

In this case, we extended the applicability of the
FMS-DT-TMM to a 3-flexible manipulator with flexible joints
moves in the horizontal plane, as illustrated in Fig. 7.

The overall transfer equation for this system is expressed as

�zO = ULink3UJoint3ULink2UJoint2ULink1UJoint1�zI

ULink,j = UbN ,jUsN,j
· · ·Ub1,jUm1,j

UJoint,j = UK,jUMotor,j

(16)

where UK denote the flexibility of the joints. The driven angles
for each joint are

θ1,2,3 =

{
π
12

(
1− cos( 2πtt0

)
)
, 0 ≤ t ≤ t0

2

π
12 ,

t0
2 ≤ t

(17)

where in this case, t0 = 0.8s is the period of oscillation.
Parameters for the simulation are tabulated in Table III.

TABLE III
PARAMETERS OF THE MULTI-LINK FLEXIBLE MANIPULATOR
Symbol Value Unit Parameters

L 0.254 [m] Length of each link
h 0.00508 [m] Height of beam
w 0.00508 [m] Width of beam
I wh3/12 [m4] Area moment of inertia
E 71 · 109 [N/m2] Young’s modulus
ρ 2710 [kg/m3] Density

Km 100 [N ·m/rad] Motor elasticity
Mm 0.04 [kg] Mass of each joint

The effect of inertial damping in links have been neglected
in this study, and the joints connected between links are
considered frictionless. γ = 0.51, β = 0.7 and time step
ΔT = 0.001s are used in the simulation. The value of
γ = 0.51 introduces a relatively small algorithmic damping
to make the simulation more stable with negligible influence
on response amplitude.

The comparison results of the flexible manipulator with
rigid and with flexible joints are shown in Figs. 8 and 9.
The end point error in X and Y direction are illustrated in
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Fig. 6 Response of the manipulator: (a) angular position response of the manipulator; (b) end point deflection; (c)frequency response of the deflection

Fig. 7 The schematic of a three-link manipulator with link and joint
flexibility

Fig. 8. It can be noted that the manipulator with flexible
joints performs considerable larger end point error than that
with rigid joints. In addition, the manipulator frequency
response with flexible joints shows lower natural frequency.
Consequently, one can see from Fig. 8 that, due to the joint
flexibility, the manipulators exhibit more oscillatory behavior
than those with rigid joints. In Figs. 9 (a)-(c), the deformations
of the three links are compared with/without joint elasticity
and in Fig. 9 (d), the links deformations are compared with
each other with the existence of flexible joint.

The simulations present that the results considering and not
considering the joint flexibility are quite different considering
the endpoint error and link deflections. The results indicate that
joint flexibility plays a important role in the dynamic behavior
of manipulators with elasticity. Furthermore, the notable link

and joint deformation differences among one manipulator
could provide the insights in design and controlling for
manipulator mechanisms.

V. CONCLUSIONS

In this paper, a computationally efficient method has been
demonstrated to obtain the dynamic equations of motion for a
generalized framework of an n-flexible link manipulator with
joints elasticity. The proposed method is based on the Discrete
Time Transfer Matrix Method and the Finite Segment Method,
in which the flexible linkage is discretized by a certain number
of rigid links connecting by adjacent torsion springs. This
approach avoids the establishment of global dynamic equations
by multiplying corresponding component transfer matrices. A
single flexible link manipulator experiment was performed,
and simulations of a three flexible link robot were presented.
The sound agreement of results between experiments and
simulations approved the applicability and accuracy of the
proposed method.
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Fig. 8 The endpoint error in X direction (a) and Y direction (b)
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