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Lyapunov Type Inequalities for Fractional Impulsive
Hamiltonian Systems

Kazem Ghanbari, Yousef Gholami

Abstract—This paper deals with study about fractional
order impulsive Hamiltonian systems and fractional impulsive
Sturm-Liouville type problems derived from these systems. The
main purpose of this paper devotes to obtain so called Lyapunov
type inequalities for mentioned problems. Also, in view point on
applicability of obtained inequalities, some qualitative properties such
as stability, disconjugacy, nonexistence and oscillatory behaviour of
fractional Hamiltonian systems and fractional Sturm-Liouville type
problems under impulsive conditions will be derived. At the end,
we want to point out that for studying fractional order Hamiltonian
systems, we will apply recently introduced fractional Conformable
operators.
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I. INTRODUCTION

AS we know, the historical perspective of Lyapunov

inequalities turns back to the last decade of nineteenth

century. A. M Lyapunov, in 1892, in the study of periodic

motion, introduced an effective tool for studying the qualitative

behavior of second order differential equations with ω-periodic

coefficients of the form

y
′′
+ q(t)y = 0, −∞ < t < ∞. (1)

Lyapunov stated the following theorem:

Theorem 1: [14][Chapter III, Theorem II] If function q can

only take positive or zero values(without being identically

zero), and if further it satisfies in condition

ω

∫ ω

0

q(t) ≤ 4,

the roots of the characteristic equation corresponding to (1)

will always be complex, their moduli being equal to 1.

By means of Floquet theory, one can conclude that the result

of Theorem 1 is equal to stability of second order ODE (1)

in the sense that all solutions of (1) are bounded as t → ±∞.

The inequality

ω

∫ ω

0

q(t)dt > 4. (2)

is called Lyapunov inequality.

After introducing the Lyapunov inequality (2) by now,

extensive studies about Lyapunov (type) inequalities have been

recognized; so that, nowadays Lyapunov type inequalities are

known as a prefect theory for studying qualitative behaviour

of differential equations such as stability, disconjugacy and

oscillatory properties. For verification the above discussion,
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some of great developments of Lyapunov type inequalities can

be found in [2], [3], [5]-[8], [11], [13], [15]-[17], [19]-[21].

Recently, by means of Lyapunov type inequalities

corresponding to the fractional boundary value problems,

some interesting results about real zeros of Mittag-Leffler

functions have been obtained. More details are available

in [6], [7], [11]. We notice here this fact that non of

above mentioned qualitative gestures for fractional differential

equations have been investigated by now. So in this paper,

authors are concerned with a study about reconstruction

of fractional Lyapunov type inequalities for estimating the

mentioned qualitative gestures of fractional Hamiltonian

systems under impulse effects. On the other hand, one

can observe the boom of developments of theory of

impulsive differential equations since 1990 by now. Unerring

seeking reason for these developments, leads us to the

great applicability of mathematical simulations via impulsive

differential equations for many important research fields of

science and technology such as optimal control, population

dynamics, biotechnologies, industrial robotics and so on.

In this way, the monographs [4], [18] contain invaluable

applications of impulsive differential equations. Reference [10]

considered the impulsive Hamiltonian system with T-periodic

coefficients⎧⎨
⎩

x
′
(t) = a(t)x(t) + b(t)u(t),

t �= τi,

u
′
(t) = −c(t)x(t)− a(t)u(t),

(3)

subjected to the following impulse effects

x(τi+) = αix(τi−), u(τi+) = αiu(τi−)− βix(τi−),
t, αi, βi ∈ R, i ∈ Z,

(4)

and under certain classes of assumptions obtained the

inequality

∫ T

0

|a(t)|dt+
(∫ T

0

b(t)dt

)1/2{∫ T

0

c+(t)dt

+
r∑

i=1

(
βi

αi

)+
}1/2

> 2,

(5)

where f+(t) = max {f(t), 0}.

They used the obtained Lyapunov type inequality for

providing a criterion for stability and disconjugacy of

impulsive Hamiltonian system (3). Also, they studied in [9],

the second order linear impulsive differential equations with
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T-periodic coefficients of the form⎧⎨
⎩
(
p(t)y

′
)′

+ q(t)y = 0, t �= τi,

y(τi+) = αiy(τi−), y[1](τi+) = αiy
[1](τi−)− βiy(τi−),

(6)

where t ∈ R, i ∈ Z, x(τi±) := limt→τi± x(t) and

y[1](t) = p(t)y
′
(t) denotes the so called quasi derivative of

y(t). By means of Floquet theory, under certain conditions

they obtained the following Lyapunov type inequality[∫ T

0

dt

p(t)

]
.

[∫ T

0

q+(t)dt+
r∑

i=1

(
βi

αi

)+
]
> 4. (7)

Authors applied this inequality as (in-)stability criterion for

ODE (6).

Indeed, considering an adequate connection between

coefficients one can transform the impulsive Hamiltonian

system (3), (4) to the second order linear impulsive differential

equation (6). So, we can discuss here about ”obtaining

relevant Lyapunov type inequality for second order impulsive

differential equation (6) via imposing new coefficients

instead of attempting to find it with usual calculatory

manner”. So, in this paper, we tried to develop obtained

results in the mentioned papers and refined corresponding

fractional Lyapunov type inequalities for fractional impulsive

Hamiltonian systems and consequently reconstruction of

obtained results for mentioned systems. In the next step,

from obtained results for fractional Hamiltonian systems,

similar results will be concluded for fractional sturm-liouville

type problems reduced from fractional Hamiltonian systems.

Consider the following fractional order linear Hamiltonian

system:

Tνy(t) = JH(t)y(t), t ∈ R,

where

Tνy(t) =

(
T νu(t)

T νv(t)

)
, J =

(
0 1
−1 0

)

, H(t) =

(
c(t) a(t)
a(t) b(t)

)
.

Equivalently, we consider the following system{
T νu(t) = a(t)u(t) + b(t)v(t),
T νv(t) = −c(t)u(t)− a(t)v(t),

(8)

where⎧⎨
⎩

t ∈ R, ν ∈ (0, 1),
a(t), b(t), c(t) : piece-wise continuous functions on R,
T ν : Conformable fractional derivative of order ν

(9)

Assume that {τi}i∈Z be a increasing real sequence such that

is τi < τi+1 for all i ∈ Z. Suppose that there exist positive

constants T ∈ R, r ∈ Z such that

τi+r = τi + T, i ∈ Z, 0 < τ1 < τ2 < ... < τr < T. (10)

Let a, b, c : R\{τi : i ∈ Z} → R and αi, βi ∈ R for i ∈ Z

satisfy the following conditions

1. a(t + T ) = a(t), b(t + T ) = b(t), c(t + T ) =
c(t), t ∈ R\{τi : i ∈ Z},

2. αi �= 0, αi+r = αi, βi+r = βi, i ∈ Z,

3. a, b, c ∈ Cp([0, T ],R),

where

Cp ([0, T ],R) ={
f
∣∣ f : [0, T ]\{τ1, τ2, ..., τr} → R, f ∈ C([0, T ]\{τ1, ..., τr})

, f(τi−), f(τi+) ∈ R, i ∈ [1, r]N0
= {1, 2, ..., r}

}
.

In this paper, we are concerned with the special class of

fractional Hamiltonian system (11) of the form{
T νu(t) = a(t)u(t) + b(t)v(t),

T νv(t) = −c(t)u(t)− a(t)v(t),
(11)

such that g(t) = tg(t), with impulsive conditions{
u(τi+)− αiu(τi−) = 0,
v(τi+)− αiv(τi−) = −βiu(τi−),

(12)

where ν ∈ (0, 1), t, αi, βi ∈ R, i ∈ Z.

Remark 1: If we take a(t) ≡ 0, b(t) �≡ 0 for any t ∈ R in

fractional Hamiltonian system (11), then setting new variables

p(t) =
1(

b(t)
) , q(t) = c(t), (13)

reduces the fractional impulsive Hamiltonian system (11), (12)

to the fractional impulsive differential equation

T ν
(
p(t)T νu

)
+ q(t)u = 0, t ∈ R, (14)⎧⎨

⎩
u(τi+)− αiu(τi−) = 0,

(
pT νu

)
(τi+)− αi

(
pT νu

)
(τi−) = −βiu(τi−).

(15)

As stated before, we are going to generalize the above

mentioned obtained results for ordinary Hamiltonian system

(3), (4) and second order differential equation (6) and

obtain corresponding results for fractional impulsive problems.

In this way, several difficulties will appear such as this

issue that we cannot obtain corresponding fractional order

inequalities unless we use the certain fractional order operators

that preserve Leibnitz rule, instead of considering standard

fractional order operators such as fractional Riemann-Liouville

or Caputo operators. Despite standard process of Leibnitz

rule for integer order differential calculus, in the theory of

fractional calculus this classic rule is not satisfied generally.

In other means, if we take ν = 1, in Hamiltonian system

(8), multiplying the first equation by v(t) and second one by

u(t) and then summing resulting equations the left hand side

gives us standard Leibnitz rule (uv)
′
= u

′
v + uv

′
. So, in

order to implement mentioned rule in fractional differential

calculus, we must apply certain fractional order operators

that preserve the fractional Leibnitz rule, namely for favorite

functions u(t), v(t)

(T νuv) (t) = (T νu) (t)[v(t)] + [u(t)] (T νv) (t).

More recently R. Khalil et al. and T. Abdeljawad
in [1], [12] introduced new definitions for fractional order

operators by means of generalizing the limit approach of
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integer order differentiation operators, that retain interestingly

some of important algebraic properties for fractional order

differentiation. So, we represent these so called fractional

Conformable operators in the sequel.

Definition 1: [1] The left and right sided fractional

Conformable integrals of order n < ν ≤ n+ 1, n ∈ N∪ {0},

for function f ∈ L1(a, b) are defined as:

Iνf(t) =

⎧⎪⎪⎨
⎪⎪⎩

Iνaf(t) =
1

n!

∫ t

a

(t− s)n(s− a)ν−n−1f(s)ds,

bI
νf(t) =

1

n!

∫ b

t

(s− t)n(b− s)ν−n−1f(s)ds.

(16)

Consequently, based on [1], [12], we define corresponding

fractional operators as:

Definition 2: The left and right sided fractional

Conformable derivatives of order n < ν ≤ n + 1, for

(n+ 1)−differentiable function f(t) on t > a is given by:

T νf(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T ν
a f(t) =

lim
ε→0

f ([ν]−1)(t+ ε(t− a)[ν]−ν)− f ([ν]−1)(t)

ε
,

bT
νf(t) = (−1)n+1×

lim
ε→0

{
f ([ν]−1)(t+ ε(b− t)[ν]−ν)− f [ν]−1(t)

}
ε

,

(17)

where n ∈ N∪{0} and [ν] is the smallest integer greater than

or equal to ν.

II. MAIN RESULTS

In this section, main results will be organized as:

(M1) In first step, we will obtain Lyapunov type inequality

for fractional Hamiltonian systems

Tν
0y(t) =

{
tJH(t)y(t), ν ∈ (0, 1), t ∈ R,
JH(t)y(t), ν = 1, t ∈ R,

(18)

where

Tν
0y(t) =

(
T ν
0 u(t)

T ν
0 v(t)

)
, J =

(
0 1
−1 0

)

, H(t) =

(
c(t) a(t)
a(t) b(t)

)
.

Equivalently, we are going to study the fractional

Hamiltonian system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

T ν
0 u(t) = a(t)u(t) + b(t)v(t),

ν ∈ (0, 1),
T ν
0 v(t) = −c(t)u(t)− a(t)v(t),

⎧⎨
⎩

u
′
(t) = a(t)u(t) + b(t)v(t),

ν = 1,

v
′
(t) = −c(t)u(t)− a(t)v(t),

(19)

under impulse effects{
u(τi+)− αiu(τi−) = 0,
v(τi+)− αiv(τi−) = −βiu(τi−),

(20)

such that t ∈ [0, T ], αi, βi ∈ R, i ∈ Z, 0 < ν ≤ 1, t �=
τi and g(t) = tg(t).

(M2) In second step, we will find Lyapunov type inequality

for fractional Sturm-Liouville type problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T ν
0

(
p(t)T ν

0 u
)
+ q(t)u = 0,

t ∈ [0, T ]\{τi| i ∈ [0, r]N0
}, ν ∈ (0, 1),

(
p(t)u

′)′
+ q(t)u = 0,

t ∈ [0, T ]\{τi| i ∈ [0, r]N0
}, ν = 1,

(21)

subjected to the impulsive conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

u(τi+)− αiu(τi−) = 0, ν ∈ (0, 1),

(
pT ν

0 u
)
(τi+)− αi

(
pT ν

0 u
)
(τi−) = −βiu(τi−),⎧⎨

⎩
u(τi+)− αiu(τi−) = 0, ν = 1,

(
pu

′)
(τi+)− αi

(
pu

′)
(τi−) = −βiu(τi−),

(22)

Lemma 1: Assume that

(C1)
r∏

i=1

α2
i = 1, (23)

(C2)

b(t) > 0,

∫ T

0

tν
(
c(t)− a2(t)

b(t)

)
dt+

r∑
i=1

βi

αi
> 0.

(24)

If A2 ≥ 4, then fractional Hamiltonian system (19),

(20) has a nontrivial solution y(t) = (u(t), v(t)) with the

following property:

There exist two points t1, t2 ∈ R with 0 ≤ t1 ≤ T, t2 >
t1, t2 − t1 ≤ T such that u(t) has zeros at t1 and t2, and

u(t) �= 0 for all t1 < t < t2.

Theorem 2: Assume that the conditions of Lemma 1 hold.

Then the inequality

∫ T

0

|a(t)|dt+
(∫ T

0

b(t)dt

)1/2(∫ T

0

c+(t)dt

+
r∑

i=1

(
βi

αi

)+

.
1

T ν

)1/2

>
2

T ν
.

(25)

is satisfied.

III. APPLICATIONS

Theorem 3: [Stability Criterion] Assume that

(E1)
r∏

i=1

α2
i = 1, (26)

(E2)

b(t) > 0,

∫ T

0

tν
(
c(t)− a2(t)

b(t)

)
dt+

r∑
i=1

βi

αi
> 0.

(27)
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(E3)

∫ T

0

|a(t)|dt+
(∫ T

0

b(t)dt

)1/2

×
(∫ T

0

c+(t)dt+

r∑
i=1

(
βi

αi

)+

.
1

T ν

)1/2

≤ 2

T ν
.

(28)

Then, the Hamiltonian system (19), (20) is stable.

We introduce here new refinement of the fractional

Lyapunov-type inequality (25) as below.

Theorem 4: Assume that a, b, c ∈ Cp[t1, t2](t1 <
t2), b(t) > 0 and αj �= 0 for all j ∈ Z. Let the Hamiltonian

system⎧⎨
⎩

T ν
t1u(t) = a(t)u(t) + b(t)v(t),

ν ∈ (0, 1),
T ν
t1v(t) = −c(t)u(t)− a(t)v(t),

(29)

{
u(τi+)− αiu(τi−) = 0,
v(τi+)− αiv(τi−) = −βiu(τi−),

(30)

has a real solution (u(t), v(t)) such that u(t1+) = 0 = u(t2−)
and u(t) �= 0 on (t1, t2). Then the Lyapunov-type inequality

∫ t2

t1

|a(t)|dt+
(∫ t2

t1

b(t)dt

)1/2
(∫ t2

t1

c+(t)dt

+
∑

τi∈(t1,t2)

(
βi

αi

)+

.
1

(t2 − t1)ν

)1/2

>
2

(t2 − t1)ν

(31)

holds.

Theorem 5: [Disconjugacy Criterion] Let a, b, c ∈
Cp[t1, t2], b(t) > 0 and αj �= 0 for all j ∈ Z. If

∫ t2

t1

|a(t)|dt+
(∫ t2

t1

b(t)dt

)1/2
(∫ t2

t1

c+(t)dt

+
∑

τi∈(t1,t2)

(
βi

αi

)+

.
1

(t2 − t1)ν

)1/2

≤ 2

(t2 − t1)ν
,

(32)

then the Hamiltonian system⎧⎨
⎩

T ν
t1u(t) = a(t)u(t) + b(t)v(t),

ν ∈ (0, 1),
T ν
t1v(t) = −c(t)u(t)− a(t)v(t),

(33)

{
u(τi+)− αiu(τi−) = 0,
v(τi+)− αiv(τi−) = −βiu(τi−),

(34)

is disconjugate on [t1, t2].

Theorem 6: [Zero Count] Assume that {sk}2N+1
k=1 , N ≥ 1

be an increasing sequence of zeros of u(t) such that every

consecutive pair of its elements satisfy in zeros conditions in

Theorem 4. Suppose that {sk}2N+1
k=1 lies in compact interval

I with length l. Then

2N

lν
<

N∑
k=1

{∫ s2k+1

s2k−1

|a(t)|dt+
(∫ s2k+1

s2k−1

b(t)dt

) 1
2

(∫ s2k+1

s2k−1

c+(t)dt+
∑

τi∈(s2k−1,s2k+1)

(
βi

αi

)+

1

(s2k+1 − s2k−1)ν

) 1
2
}
.

(35)

Theorem 7: [Nonexistence Criterion] Assume that a, b, c ∈
Cp[t1, t2], b(t) > 0 and αj �= 0 for all j ∈ Z. Suppose that

∫ t2

t1

|a(t)|dt+
(∫ t2

t1

b(t)dt

)1/2
(∫ t2

t1

c+(t)dt

+
∑

τi∈(t1,t2)

(
βi

αi

)+

.
1

(t2 − t1)ν

)1/2

≤ 2

(t2 − t1)ν
,

(36)

Then, the Hamiltonian system (33), (34) has no nontrivial

solution.

Theorem 8: [Distance Between Consecutive Zeros] Assume

that a ∈ Lδ[0,∞), 1 ≤ δ < ∞ and y(t) = (u(t), v(t)) be an

oscillatory solution of the Hamiltonian system (33),(34). Let

{tn}∞n=1 be an increasing sequence of zeros of u(t) in [0,∞)
and for any arbitrary M > 0, we have∫ t+M

t

bσ(t)dt → 0, t → ∞, σ ≥ 1. (37)

Then tn+1 − tn → ∞ as n → ∞.

In the sequel, we introduce the Lyapunov-type inequality

corresponding to the fractional S-L type problem (21) and

(22) as:

Theorem 9: Assume that

(S1)
r∏

i=1

α2
i = 1, (38)

(S2)

A2 ≥ 4, (39)

(S3)

p(t) > 0,

∫ T

0

tνq(t)dt+
r∑

i=1

βi

αi
> 0. (40)

Then, the Lyapunov type inequality(∫ T

0

dt

p(t)

)(∫ T

0

q+(t)dt+
r∑

i=1

(
βi

αi

)+
1

T ν

)
>

4

T 2ν
,

(41)

is satisfied.

In the end, we point out this fact that all the

qualitative behaviour established above for the fractional

Hamiltonian system (18)-(20) can be concluded for fractional

Sturm-Liouville type problem (21) and (22).
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IV. CONCLUSION

In this paper, the periodic and non-periodic Lyapunov-type

inequalities corresponding to the fractional impulsive

Hamiltonian systems of the form (19), (20) studied. As

applications to these inequalities, some qualitative gesture

such as stability, disconjugacy, nonexistence of non-trivial

solutions, upper bound estimation for number of zeros of

the non-trivial solutions and distance between consecutive

zeros of the oscillatory solutions of the under consideration

fractional Hamiltonian systems concluded. We point out once

again this fact that as a result of retaining the Leibnitz rule,

we apply fractional conformable derivatives that are needed

in extracting Lyapunov-type inequalities from the fractional

Hamiltonian systems (19), (20). Beside these applications, the

same ones can be concluded for fractional Sturm-Liouville

type problems (21), (22).
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[3] Mustafa Fahri Aktaş, Devrim Çakmak, Aydin Tiryaki; On Lyapunov type
inequalities of a three-point boundary value problem for third order linear
differential equations, Appl. Math. Lett., (2015), In Press.

[4] Drumi Bainov, Valery Covachev; Impulsive Differential Equations With
a Small Parameter, World Scientific, (1994).

[5] Sougata Dhar, Qingkai Kong; Liapunov-type inequalities for third-order
half-linear equations and applications to boundary value problems,
Nonlinear Anal. Theory, Methods and Applications, 110 (2014), 170-181.

[6] Rui A.C. Ferreira; A Lyapunov-type inequality for a fractional boundary
value problem, Fract. Calc. Appl. Anal., Vol. 16, No 4 (2013), pp.
978-984; DOI: 10.2478/s13540-013-0060-5.

[7] Rui A. C. Ferreira; On a Lyapunov-type inequality and the zeros of
a certain Mittag-Leffler function, J. Math. Anal. Appl., 412, 2 (2014),
1058-1063.
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