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 
Abstract—Negative pressures of liquids have been expected to 

contribute many kinds of technology. Nevertheless, experiments for 
subjecting liquids which have not too small volumes to negative 
pressures are difficult even now. The reason of the difficulties is 
because the liquids tend to generate cavities easily. In order to remove 
cavitation nuclei, an apparatus for enclosing water into a metal 
Berthelot tube under vacuum conditions was developed. By using the 
apparatus, negative pressures for water rose to ca. -20 MPa. This is the 
highest value for water in metal Berthelot tubes. Results were 
explained by a traditional crevice model. 
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I. INTRODUCTION 

HEN a liquid is over-expanded at a temperature, 
pressure of the liquid becomes negative absolutely 

unless vapor phase appears. Since negative pressure is in 
metastable state thermodynamically, tiny bubbles are seen 
suddenly in the liquid, and the liquid coexists with its vapor. 
This phenomenon is called cavitation [1]. 

Negative pressure is an interesting and important object in 
science and technologies. For example, phase diagrams of 
proteins in negative pressure regions will give useful 
information to avoid aggregations of proteins in human bodies 
which may occur under negative pressure generated with 
medical ultrasounds [2]. 

There have been few experimental reports to measure liquids’ 
properties under negative pressures except for their tensile 
strengths because cavitation occurs easily before negative 
pressured become high [2]-[4]. A suitable means for such 
measurements is the Berthelot method. This method uses 
difference of thermal expansion between a liquid and a 
container, and it generate static negative pressures. 

In previous studies about the Berthelot method, containers 
were made of glasses [5], [6], metals [7] and minerals [8] 
exclusively. Metal tubes had merits of high strengths as 
pressure vessels and of experiments for various densities of 
liquids, though they had been said to be notorious materials for 
negative pressures lower than other containers. Therefore, 
studies of metal Berthelot tubes were carried out. Negative 
pressures for water of ca. -18 MPa [9] and some organic liquids 
of ca. -20 MPa [10] could be attained by repeating a few 
thousands of temperature cycles. These results were obtained 
on a basis of a gas-trapping crevice model with a gas supply 
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assumption about cavitation nuclei [11]. In addition, properties 
under negative pressure regions to ca. -15 MPa were reported 
for two kinds of thermotropic liquid crystals [12], [13] and 
water [14]. However, negative pressures were too low to give 
useful information; techniques for higher negative pressures 
were requested. 

The crevice model insists that 1) gases trapped within tiny 
crevices in dust particles and on the container wall serve as 
heterogeneous nuclei when negative pressure builds up, and 2) 
negative pressure is limited by the supply of gas from sources in 
the metal bulk to the crevices [11]. 

In the previous studies of metal tubes, sample liquids were 
sealed into metal containers with softer metal plugs [9]-[14]. 
The operation was as follows; 1) the plugs were located on 
opening edges of the containers, and 2) they were forced to the 
edges with screws and were deformed there plastically. The 
operation was carried out under atmospheric pressure. If even 
the first of the operation had been done under vacuum 
conditions, the gases trapped within the crevices would have 
been reduced in amount; higher negative pressures would have 
been generated. Thus, in this study, an apparatus by which the 
sample liquid is poured into the container and is enclosed with 
the plug under a vacuum condition is made, and negative 
pressures with temperature cycles are measured. Negative 
pressures of ca. -20 MPa for water were obtained after a few 
thousands of temperature cycles at characteristic temperatures 
less than ca. 65 °C, at which pressures became zero. On the 
other hand, negative pressures for higher temperatures 
deteriorated. The results were explained by a gas trapping 
crevice model. 

II. EXPERIMENT 

The experimental procedure employed here is similar to that 
reported before [14]. So, we describe some specific to this 
study in detail and the others briefly. 

Fig. 1 shows the Berthelot method schematically [15]. A 
Berthelot tube contains liquid and a small volume of air and 
liquid vapor at a temperature Ta as shown in Fig. 1 (a). When 
the tube is heated, the liquid fills the tube at a temperature as 
shown in Fig. 1 (b) because the liquid tends to expand more 
than the tube. At the temperature, liquid volume is equal to tube 
one, and pressure of the liquid becomes zero. The temperature 
is called T0. Then the tube is cooled, pressure decreases and, 
instead, negative pressure increases to a temperature Tc just 
before cavitation as shown in Fig. 1 (c) because the liquid tends 
to shrink more than the tube. Fig. 1 (d) shows the tube and 
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the tube was immersed tended to cause a troublesome thermal 
shock, and a too low temperature caused cavitation just after the 
immersion [11].  

In this study, the tube had no sensor to monitor the 
immersion temperature, that is, the sample water’s temperature 
on the immersion. After trials, authors found intermediate 
temperatures of the cool bath regardless of negative pressures. 
The scatter of negative pressures for that under high vacuum 
was yielded as a result of the trials. Fig. 4 insists that enclosure 
of water under a higher vacuum condition was an excellent 
means to generate high negative pressures. 
 

 

Fig. 4 Trends in negative pressures for three conditions; the brass ball 
was located on the container under atmospheric pressure (□), low 

vacuum (▲), and high vacuum (○) 
 
Fig. 5 shows scatters in negative pressures with temperature 

cycles for the initial 3000 cycles for two kinds of ball under a 
high vacuum condition, namely tough pitch copper (TPC) and 
oxygen free copper (OFC).  

 

 

Fig. 5 Scatters in negative pressures with temperature cycles for the 
initial 3000 cycles for two kinds of ball; TPC (□), and OFC (■) 

 
Negative pressures for OFC were higher than those for TPC, 

and frequencies of negative pressures in a range from -20 MPa 
to -21 MPa were 18 times. The highest negative pressure was ca. 
-20.7 MPa for OFC and ca. -19 MPa for TPC which were 
higher than ca. -18.5 MPa for an all-stainless steel tube [9]. 

Fig. 6 shows scatters in negative pressures with temperature 
cycles for the initial 2500 cycles for brass balls undergoing 
different surface treatments, namely non- and plasma 
treatments. Wettability was improved by the plasma treatment 
[16]. Negative pressures for the plasma treatment were higher 
than those for non-treatment. Negative pressures of ca. -19 MPa 
were obtained with the plasma treatment.  

 

Fig. 6 Scatters in negative pressures with temperature cycles for the 
initial 2500 cycles for brass balls having different surface treatments; 

non (□), and plasma treatments (■) 
 

Fig. 6 insists that negative pressures were restricted by gases 
trapped within crevices on the ball surfaces because negative 
pressures depended on surface conditions of the balls. 
Improvement of wettability was to reduce amounts of gases in 
the crevices and caused higher negative pressure. 

The ball of OFC which underwent the plasma treatment was 
expected to generate high negative pressures. Fig. 7 shows 
scatters in negative pressures with temperature cycles for the 
initial 2352 cycles for the ball. The T0 for this experiment was 
adjusted at ca. 74 °C. The higher T0 was expected to lead 
higher negative pressures on a basis of principle of the 
Berthelot method. 

 

 

Fig. 7 Scatters in negative pressures with temperature cycles for the 
initial 2352 cycles for the ball of OFC having plasma treatment 

 
Contrary to the expectation, negative pressures were low. 

The highest was only ca. 15.5 MPa. This was attributed to the 
high T0. Similar deterioration was observed in cases of acetone 
and water sealed with the balls of OFC. 

According to the gas trapping crevice model as described in 
Section I, a pressure difference between gas in a crevice and a 
liquid contacting with the gas through gas-liquid interface 
depends on the interfacial tension [11]. It is known generally 
that interfacial tension decreases with temperature. Therefore, 
the higher T0 was, the pressure difference was smaller. The 
small difference indicates that cavitation occurred easily, 
causing low negative pressures. Here, we gave an interpretation 
on a basis of the gas trapping crevice model. Another 
interpretation is possible; gas in metal bulk was supplied into 
the crevice through grain boundaries connecting with the 
crevice. Generally, the supply rate depends on temperature; the 
rate increases with temperatures. Thus, a higher T0 caused 
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lower negative pressures because gases were supplied faster. 
Regrettably, authors could not identify either of the two factors 
in this experiment. 

IV. CONCLUSIONS 

In order to generate high negative pressures by the metal 
Berthelot method, an apparatus for enclosing a sample liquid 
into a container with a ball was tested. Negative pressures of ca. 
-20 MPa was obtained for distilled water. The values are the 
highest for water in the metal Berthelot tube. The deterioration 
of negative pressures with high T0s was observed. The results 
were explained by a gas trapping crevice model. 
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