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 
Abstract—There is a gap at combustor-turbine interface where 

leakage flow comes out to prevent hot gas ingestion into the gas 
turbine nozzle platform. The leakage flow protects the nozzle endwall 
surface from the hot gas coming from combustor exit. For controlling 
flow’s stream, the gap’s geometry is transformed by changing fillet 
radius size. During the operation, step configuration is occurred that 
was unintended between combustor-turbine platform interface caused 
by thermal expansion or mismatched assembly. In this study, CFD 
simulations were performed to investigate the effect of the fillet and 
step on heat transfer and film cooling effectiveness on the nozzle 
platform. The Reynolds-averaged Navier-stokes equation was solved 
with turbulence model, SST k-omega. With the fillet configuration, 
predicted film cooling effectiveness results indicated that fillet radius 
size influences to enhance film cooling effectiveness. Predicted film 
cooling effectiveness results at forward facing step configuration 
indicated that step height influences to enhance film cooling 
effectiveness. We suggested that designer change a combustor-turbine 
interface configuration which was varied by fillet radius size near 
endwall gap when there was a step at combustor-turbine interface. Gap 
shape was modified by increasing fillet radius size near nozzle 
endwall. Also, fillet radius and step height were interacted with the 
film cooling effectiveness and heat transfer on endwall surface. 
 

Keywords—Gas turbine, film cooling effectiveness, endwall, 
fillet.  

I. INTRODUCTION 

OR enhancing gas turbine thermal efficiency and output of 
power, turbine inlet temperature has increased. Combustion 

method has been developed to reduce NOx. Pre-mixed 
combustion method effected to reduce NOx; however, 
temperature on endwall has increased prior to past combustion 
method. Consequently, endwall increased heat loads on turbine 
components. Cooling methods consist of slot cooling and 
discrete hole for protecting endwall from hot gas stream. Slot is 
created at combustor-turbine interface gap for protecting 
endwall surface from hot gas. The interface gap is an area 
where cooling performance is improved. 

This paper reports effects of step and fillet shape at 
combustor-turbine interface on endwall heat transfer. In 
addition, time-resolved vector and streamline predictions 
within the vane stagnation plane are presented. Film cooling 
effectiveness, Nusselt number, and Net Heat Flux Reduction 
are simulated by varying fillet radius size and step height size.  
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II. LITERATURE REVIEW 

Several past studies have investigated the performance of 
purge flows from upstream gaps at combustor-turbine interface. 
Many studies have preceded film cooling from discrete holes 
and purge flow. Reference [1] measured secondary flows in a 
vane passage and combustor-turbine leakage flow and found 
cooling performance according to mass flow rate (MFR). 
Reference [2] found effect of leakage flows on endwall cooling. 

Reference [3] researched the effects of mass flux ration and 
momentum flux ratio by varying MFR and slot width. They [3] 
also included mid-passage gap and film cooling holes. 
Momentum flux ratio is dominant for film cooling 
effectiveness [3]. Reference [4] researched for slot injection 
angle compared with 90 degree and 45 degree. 45 degree 
injection angle caused to enhance much more than 90 degree 
injection angle. Also, 45 injection angles caused to reduce 
horseshoe vortex near leading edge. Reference [5] researched 
same geometry and found that decreasing slot with while 
maintaining a constant mass flow resulted in larger coolant 
coverage areas and increased film cooling effectiveness. 
Reference [6] performed to study heat transfer on vane endwall 
by computational simulation compared experiment results. 
Reference [7] researched for adiabatic effectiveness an 
axisymmetric contoured endwall on a nozzle guide vane. 
Contoured endwall caused to reduce film cooling performance 
compared flat endwall. Reference [8] examined heat transfer 
with non-axisymmetric endwall. The effect of contouring on 
the endwall heat transfer was tested for off-design performance 
according to Reynolds number. If Reynolds number is high, 
heat transfer coefficient is increased. Reference [9] performed 
cooling effectiveness about mid-passage gap and upstream slot 
on vane endwall. Comparisons indicated that the computational 
predictions agreed relatively well with measured adiabatic 
effectiveness. Reference [10], [11] investigated backward 
facing step and forward facing step. Reference [12] examined 
heat transfer on endwall at forward facing step and backward 
facing step. Forward facing step caused increasing heat flux on 
endwall and made decreasing NHFR compared to nominal case. 
Backward facing step produced slight reduction in NHFR 
compared to nominal case. 

Many studies [3]-[9] were performed about MFR on 
mid-passage gap and combustor-turbine interface gap. Only a 
few studies [10]-[12] have investigated about step 
configuration. The study reported in this paper seeks to 
understand film cooling effectiveness and heat transfer varying 
fillet radius size and step height size. In addition, the resulting 
film cooling effectiveness and heat transfer will be supported 
by time-resolved flow field predictions in the stagnation plane 
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