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A Practical and Efficient Evaluation Function for
3D Model Based Vehicle Matching

Yuan Zheng

Abstract—3D model-based vehicle matching provides a new way
for vehicle recognition, localization and tracking. Its key is to
construct an evaluation function, also called fitness function, to
measure the degree of vehicle matching. The existing fitness functions
often poorly perform when the clutter and occlusion exist in traffic
scenarios. In this paper, we present a practical and efficient fitness
function. Unlike the existing evaluation functions, the proposed
fitness function is to study the vehicle matching problem from
both local and global perspectives, which exploits the pixel gradient
information as well as the silhouette information. In view of the
discrepancy between 3D vehicle model and real vehicle, a weighting
strategy is introduced to differently treat the fitting of the model’s
wireframes. Additionally, a normalization operation for the model’s
projection is performed to improve the accuracy of the matching.
Experimental results on real traffic videos reveal that the proposed
fitness function is efficient and robust to the cluttered background
and partial occlusion.

Keywords—3D-2D matching, fitness function, 3D vehicle model,
local image gradient, silhouette information.

I. INTRODUCTION

IN recent years, 3D model-based object matching is an

active research area in computer vision, which is broadly

used for object recognition [1]–[4], localization [5]–[8] and

tracking [2], [4], [9]. For a target object, 3D model-based

matching is also called as 3D-2D matching, since it is to match

the 3D information with the 2D information. Specifically, it

firstly projects the 3D model onto the image plane, and then

matches the model projection with the corresponding image

information, such as image points [10]–[14], edge [1], [2],

[4], contour [5], [8], [15] and foreground information [6], [7],

[9], [16].

In traffic surveillance systems, the moving vehicles in traffic

scenarios are the interesting targets. With the development

of 3D modeling technology, 3D vehicle model can be

easily obtained. Over past decades, 3D model-based vehicle

matching has attracted more and more attentions, which

provides a new way for vehicle recognition [3], [17]–[19],

localization [8], [19]–[21] and tracking [22]–[25]. Similarly,

the 3D model-based vehicle matching is to perform the

matching in 2D image domain after projecting 3D vehicle

model onto the image plane.

A. Related Work

For 3D model-based vehicle matching, the key is to

construct an evaluation function, also called fitness function,
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to measure the goodness-of-fit between the model projection

and image data. According to the used image information,

the existing fitness function can be broadly divided into

three types as follows: The edge-based fitness function is to

extract the edges from the interesting region of the image

and use them to construct the fitness function. In [22], [23],

the image edges are extracted and the fitness function is

defined as the distance between the model projection and

the corresponding image edges. In [2], [24], the image edges

are sampled and the distance between the sampled points

and the model projection is viewed as the fitness function.

Instead of the Euclidean distance that is commonly used, [26]

utilizes a weighted square Hausdorff distance and [27] utilizes

a directional Chamfer distance. In [25], the authors proposed a

generic 3D vehicle model where the hypothesized edges from

the occluding contours and part boundaries are generated. For

each hypothesized edge, the authors found the nearby image

edges and used the perpendicular distance between the edge

correspondence to measure the matching degree.

The silhouette-based fitness function is to exploit the

silhouette information to construct the fitness function.

Generally, the silhouette is obtained via the foreground and

background segmentation. In this kind of methods, the fitness

function is defined as the similarity measure between image

silhouette and the projected model contour. In [17], [18],

[28], the overlap area between these two contours is used

as the similarity measure. For a more accurate contour

matching, the shadow removal filter is employed in [18].

Liebelt and Schertler [5] combined the contour matching

with the appearance-based mutual information measure to

further increase alignment precision. In [8], the normalized

cross correlation is used to evaluate the similarity of the

two contours and the hierarchical clustering scheme helps

accelerate the contour matching. [29] is to perform the contour

matching by means of active shape model(ASM). Other

works [9], [30], [31] are to construct the fitness function

by exploring the relationship of the image pixels around the

model projection with foreground and background (i.e., by

determining that the image pixels around the model projection

belong to foreground or background). Taking the shadow into

account, Johansson et al. [31] modeled the vehicle as a 3D

box with box shadow and compared its projection with image

foreground, background and shadow.

The intensity-based fitness function is to exploit the

image intensity or gradient information to construct the

fitness function, avoiding the edge extraction or foreground

segmentation. In [21], the intensity values of image pixels

in the neighborhood of model projection are utilized. In
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Fig. 1 Illustration of 3D model-based vehicle matching problem, where the fitness function is used to evaluate the matching between the model projection

and image data: The proposed fitness function exploits the image gradient and silhouette information

practical applications, large illumination variation would lead

to different intensity values of the same pixel. In view of

this, illumination condition estimation is incorporated into the

vehicle matching in [32], [33]. Besides pixel intensity value,

the pixel gradient (i.e., the derivative of intensity value) is

also exploited to construct the fitness function. In [34], the

discrete derivatives of image grey values in the direction

normal to the model projection are employed. Afterwards,

this method is improved by adding the normalization for

model projection and converting the evaluation function into

a likelihood framework [35]. In [20], the authors generated

the synthetic gradient by convolving the model projection with

Gaussian noise, and then compared the synthetic gradient with

image gradient. The latest progress was presented in [19], [36],

where the local pixel gradient information around the model

projection is utilized.

B. Motivation and Contributions

The existing fitness functions are generally sensitive

and error-prone to outliers, such as clutter and occlusion.

Nevertheless, the clutter and occlusion inevitably exist in

traffic scenarios. In view of this, our motivation is to propose

a novel fitness function that is more accurate and robust to

clutter and occlusion.

Inspired by the intensity-based fitness functions, we also

exploit the pixel gradient information since the gradient

calculation is usually simple and fast. In order to further

improve the accuracy of vehicle matching, except for the local

gradient information, we also exploit the image silhouette

information. Accordingly, we incorporate the matching

between the image silhouette and the model’s projected

contour into the gradient-based matching. For the model-based

vehicle matching, the wire-frame model of the vehicle is

widely used due to its simplicity. However, there is the

discrepancy between the wire-frame model and real vehicle

because of the streamlined design of real vehicle. In view

of this, we group the model’s wireframes and present a

weighting strategy to differently treat the fitting of the model’s

wireframes. Unlike the existing fitness functions, the proposed

fitness function not only considers the local and global

characteristics of vehicle matching, but also takes into account

the discrepancy between 3D vehicle model and real vehicle,

which would help improve its accuracy and robustness.

C. Paper Structure

The remainder of the paper is structured as follows.

Section II first presents the preliminary knowledge about 3D

vehicle model and its 2D projection, and then proposes a novel

fitness function in view of both local and global characteristics

of vehicle matching. Experiments on real traffic images are

presented in Section III and some concluding remarks are

presented in Section IV.

II. METHODOLOGY

A. 3D Vehicle Model and Its Projection

With the rapid development of 3D modeling technology, the

3D model of the object is available. The advantage of using

3D model consists in the robustness against the variations

in viewpoint, illumination and colour. For the model-based

vehicle matching, 3D wire-frame model is commonly used.

It is composed of several 3D line segments that delineate the

vehicle outline and some borders with high boundary contrast

such as the edges of vehicle window (see Fig. 1). In real traffic

scenarios, the vehicles of various types may appear. Therefore,

we set up a database of the vehicle wire-frame model that

includes sedan, hatchback, van, minivan and SUV.
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3D model-based vehicle matching is to match the model

projection and image data, and thus the 2D projection of

3D wire-frame model is certainly required. According to

the camera imaging principle, the mapping from the model

coordinate system(MCS) to the image coordinate system (ICS)

can be expressed as

λ

⎛
⎝ u

v
1

⎞
⎠ = Mcamera ·Mpose ·

⎛
⎜⎜⎝

Xmodel

Ymodel

Zmodel

1

⎞
⎟⎟⎠ , (1)

where (Xmodel, Ymodel, Zmodel) denotes a vertex of 3D

wire-frame model in MCS, (u, v) is the corresponding

projected point in ICS, λ is a scale factor, Mcamera is

camera projection matrix and Mpose is pose matrix that

describes the 3D pose of the vehicle model in world coordinate

system(WCS). Notice that not every projected line of 3D

wire-frame model is visible, since it may be occluded by

the model’s body from the camera’s viewpoint. For the

construction of the fitness function, only the visible projected

lines or the visible part of the projected line are used.

B. Fitness Function

The goal of the fitness function is to find out a best

match between the image data and the projection of vehicle

model. From the local perspective of vehicle matching, when

the projected lines of 3D wire-frame model coincide with

the corresponding image edges, a correct match is obtained.

In other words, at this time the image pixels lying on the

projected lines have the maximum gradient value in the

direction normal to the projected lines. As a consequence,

we exploit the pixel gradient information around the model

projection to construct the fitness function. For every visible

projected line, we introduce a rectangular neighborhood (see

Fig. 2 (a)) and compute the image gradient, in the normal

direction of the projected line, at the pixel points within

the rectangular neighborhood. Let li denotes the i-th visible

projected line and Srect denotes the rectangular neighborhood

of li. For the j-th image pixel sj within Srect, the image

gradient perpendicular to the direction of li is written as

G⊥li (sj) = Gsj · | sin
(
βsj − αli

) | , (2)

where Gsj is the gradient magnitude of sj , βsj is the gradient

orientation of sj and αli is the orientation of li. Evidently, the

closer the image pixel sj is to the projected line li, the greater

contribution it makes for constructing the fitness function.

Accordingly, the weight of sj , wsj , obeys the following

Gaussian distribution

wsj =
1

ω
√
2π

exp

(
− d2

2ω2

)
, (3)

where d is the distance from sj to li in pixels and ω is the

half width of Srect. For li, we give the normalized measure

of matching degree by

m (li) =
∑

sj∈Srect

wsj

Li
·G⊥li , (4)

il

jsG

js
js

il

iL

rectS

il
G

mQ

(a) (b)

Fig. 2 Rectangular neighborhood. (a) Rectangular neighborhood Srect of
the projected line li. Its length and width are Li and 2ω respectively. (b)

Rectangular neighborhoods of the model projection in green color

where Li is the length of li in pixels. The better li fits the

corresponding edge, the greater the value of m(li) is.

Considering the discrepancy between 3D wire-frame model

and real vehicle, we group the model’s wireframes into the

primary and secondary ones. The primary wireframes are

defined as three sets of wireframes that delineate the top, the

middle and the bottom of the vehicle (see Fig. 3 (a)); the

rest of the model’s wireframes is viewed as the secondary

wireframes. Notice that the primary wireframes describe the

vehicle borders having high boundary contrast and their

corresponding image edges are available. As for the secondary

wireframes, the corresponding image edges may not exist,

since the streamlined design of real vehicle is to substitute

the smooth surfaces for the wireframes, especially in the front

part or rear part of vehicle (see Fig. 3 (b)). Consequently, the

primary wireframes are able to better fit the corresponding

image edges than the secondary wireframes. That is to say,

the fitting of the primary wireframes has higher reliability. In

order to improve the accuracy and robustness, a natural idea is

to treat the model’s wireframes differently and emphasize the

fitting of the primary wireframes. Based on this idea, we utilize

a weighting strategy for the fitting of the model’s wireframes,

namely

M(li) =

{
q ·m (li) li is primary wireframe

(1− q) ·m (li) li is secondary wireframe
,

(5)

where q and 1− q are the weight coefficients for the primary

wireframe and the secondary wireframe, respectively. Here we

set q as a constant that is close to 1, which means that the

larger weight coefficient is assigned for the primary wireframe.

Taking all visible projected lines into account, we give the

gradient-based measure of vehicle matching as

Eg =
1

n

n∑
i=1

M(li) , (6)

where n is the number of the visible projected lines. The better

the projected lines are aligned with the corresponding image

edges, the greater the value of Eg is.

Except for the local perspective, we also consider the

vehicle matching problem from the global perspective.

Intuitively, if the projected contour of 3D wire-frame model

exactly covers the image silhouette of target vehicle, a correct
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Fig. 3 Discrepancy between the vehicle model and real vehicle: (a) 3D
wire-frame model and its grouping, where the primary wireframes are

marked in red color, (b) Real vehicle with the streamlined design, where the
smooth surfaces are substituted for the model’s wireframes, especially in the

front part or rear part of vehicle

match is obtained. Consequently, we utilize the overlap rate

to evaluate the similarity between the projected contour and

image silhouette. The silhouette-based measure for vehicle

matching is given by

Es =
Amodel ∩Aimage

Amodel ∪Aimage
, (7)

where Amodel denotes an area corresponding to model

projection and Aimage denotes an area corresponding to image

silhouette. As can be seen from (7), the range of Es is from

0 to 1. The better the contour of model projection is aligned

with the corresponding image silhouette, the greater the value

of Es is.

In order to improve the accuracy and robustness to clutter

and occlusion, the proposed fitness function E is to combine

the gradient-based measure Eg (i.e., local measure) and the

silhouette-based measure Es (i.e., global measure), which can

be expressed as

E = Es · Eg . (8)

In many cases, only using the local measure is unable to

obtain a satisfactory matching result, whereas incorporating

the global measure can do. The advantage of incorporating the

global measure into the local measure is to compensate for the

weakness of the local measure and improve the accuracy of

vehicle matching.

III. EXPERIMENTS

In this section, the experiments on real traffic videos

are conducted to verify the performance of the proposed

fitness function. We develop a software platform that utilizes

both OpenCV library and OpenSceneGraph(OSG) library. By

means of this platform, we can create the 3D wire-frame

model of vehicle, simulate the roadside camera and obtain

the rendered image of 3D scene. Taking the real traffic image

as the background image, this platform helps us visually

evaluate the matching degree between the model projection

and image data, and further helps us qualitatively evaluate

the performance of the fitness function. For the experimental

analysis, we select several typical traffic videos under different

scenarios, camera viewpoints and weather conditions, as

shown in Fig. 4. In these test videos, we choose the vehicles

of different colors and types as the target vehicles, including

sedan, hatchback, van, minivan and SUV. According to the

type of the target vehicle, the corresponding wire-frame model

is selected from the database of 3D vehicle model. In these

a b c d

e f g

Fig. 4 Test video set under various conditions: (a) Traffic scene 1: right
viewpoint and cloudy day, (b) Traffic scene 2: right viewpoint and sunny

day, (c) Traffic scene 3: left viewpoint and cloudy day, (d) Traffic scene 4:
left viewpoint and cloudy day, (e) Traffic scene 5: left viewpoint and sunny
day, (f) Traffic scene 6: left viewpoint and cloudy day, (g) Traffic scene 7:

right viewpoint and nighttime

experiments, we set q = 0.8. The parameter ω in (3) can

be roughly estimated according to the following principle of

similar triangles
ω

f
=

Δd

dcam−obj
, (9)

where f is the camera’s focal length in pixels, dcam−obj is

the rough distance from the camera to the target vehicle in

mm and Δd is the expanded distance from the vehicle border

(usually we choose Δd = 100mm).

To verify the accuracy and robustness of the fitness function,

we discuss three cases: General case (i.e., without obvious

clutter and occlusion), the case of clutter and the case of

occlusion. For these three cases, we conduct experiments on

220 matching instances that come from 70 vehicles of different

types and colors under 7 traffic scenarios, where the matching

instances for general case, the case of clutter and the case of

occlusion are 100, 60 and 60 respectively. By calculating the

fitness function, we first find a vehicle’s pose that corresponds

to the maximum matching score. Under this pose, we project

3D vehicle model and observe the matching degree using our

software platform. When the model projection visually fits

the image data of target vehicle very well, a correct vehicle

match is obtained. Here we compare the proposed fitness

function with the evaluation functions in iconic method1 [34]

and Zhang’s method [19], where iconic method is a classical

method and Zhang’s method is the latest work. The rate of the

correct match using the different evaluation functions under

three cases is listed in Table I. From this table, it can be

seen that: (1) in general case, our fitness function slightly

outperforms the other two evaluation functions; (2) when the

clutter or occlusion exist, our fitness function considerably

outperforms the other two evaluation functions. That is to say,

our fitness function is more accurate and robust to clutter and

occlusion. From these matching instances, we select several

typical instances under three cases, as shown in Fig. 5. Figs.

5 (a) and (b) give the results of vehicle matching under general

case, where the target vehicles (i.e., a gray sedan and a green

sedan) are not occluded at all and are not cluttered by the

obvious outliers. Both our fitness function and the other two

1Here all pixel points within the rectangular neighborhood of the projected
line are regarded as sample points and querying probability table is omitted.
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ba c d e f

Fig. 5 Examples of vehicle matching using the different evaluation functions under general case, the case of clutter and the case of occlusion: The first row
gives the test images; The second, third and fourth rows give the matching results using our fitness function, the evaluation function in iconic method [34]

and the evaluation function in Zhang’s method [19], respectively; The parameter ω = 6, 4, 4, 3, 3, 10 in (a)-(f), respectively

evaluation functions obtain the satisfactory matching result.

Figs. 5 (c) and (d) give the results of vehicle matching under

the case of clutter, where the target vehicles (i.e., a gray

hatchback and a silver sedan) are cluttered by the white fences

in the road and the roadside lawn. Figs. 5 (e) and (f) give

the results of vehicle matching under the case of occlusion,

where the target vehicles (i.e., a silver taxi and a white SUV)

are partially occluded by a moving vehicle and the image

boundary. Notice that the background words in the lower-left

of the image in Fig. 5 (f) are viewed as the clutter for vehicle

matching. As can be seen, when the clutter and occlusion

occur, only our fitness function obtains a satisfactory matching

result.

As we can see, our fitness function is capable of more

accurately evaluating the vehicle matching. The reason

resides in: (1) we improve the gradient-based measure

by introducing a weighting strategy for the fitting of the

model’s wireframes and a normalization operation for the

model projection; (2) we consider the global characteristics

of vehicle matching by incorporating the silhouette-based

measure into the gradient-based measure. Next, we test the

impact of the weighting strategy, the normalization operation

and the incorporation of the silhouette-based measure on

the vehicle matching. Fig. 6 shows the matching results

with and without both the weighting strategy and the

normalization operation. From this figure, we observe that the

weighting strategy and the normalization operation certainly

help improve the accuracy of vehicle matching. Fig. 7 shows

the matching results with and without the incorporation of the

silhouette-based measure. From this figure, it can be seen that

the advantage of incorporating the silhouette-based measure is

to compensate for the weakness of the gradient-based measure

and improve the accuracy of vehicle matching.

a b c

Fig. 6 Impact of both weighting strategy and normalization operation on
vehicle matching: (a) Test image, (b) Matching result with the weighting

strategy and normalization operation, (c) Matching result without the
weighting strategy and normalization operation

a b c

Fig. 7 Impact of incorporating the silhouette-based measure on vehicle
matching: (a) Test image, (b) Matching result with the incorporation of the
silhouette-based measure, (c) Matching result without the incorporation of

the silhouette-based measure

IV. CONCLUSION

In this paper, a fitness function for 3D model-based vehicle

matching is presented. It takes into account the local and

global characteristics of vehicle matching and makes full use

of the image gradient information and silhouette information.

In the gradient-based measure, considering the discrepancy

between 3D vehicle model and real vehicle, the proposed

fitness function treats the model’s wireframes differently

and emphasizes the fitting of the primary wireframes via a
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TABLE I
RESULTS OF VEHICLE MATCHING USING THE DIFFERENT EVALUATION FUNCTIONS UNDER THREE CASES (TOTAL 220 MATCHING INSTANCES FROM

70 TARGET VEHICLES UNDER THE DIFFERENT TRAFFIC SCENARIOS)

Evaluation functions
Rate of the correct match

general case case of clutter case of occlusion
iconic’s 92% 73.3% 80%
Zhang’s 92% 75% 76.7%

ours 95% 90% 91.7%

weighting strategy. Except for the gradient-based measure, the

proposed fitness function is to incorporate the silhouette-based

measure. The advantage of this way is to compensate for

the weakness of the gradient-based measure and improve the

accuracy of vehicle matching. Experiments on real traffic

images verify the effectiveness and practicability of the

proposed fitness function.
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