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Data Collection with Bounded-Sized Messages in
Wireless Sensor Networks

Min Kyung An

Abstract—In this paper, we study the data collection problem in
Wireless Sensor Networks (WSNs) adopting the two interference
models: The graph model and the more realistic physical interference
model known as Signal-to-Interference-Noise-Ratio (SINR). The
main issue of the problem is to compute schedules with the minimum
number of timeslots, that is, to compute the minimum latency
schedules, such that data from every node can be collected without
any collision or interference to a sink node. While existing works
studied the problem with unit-sized and unbounded-sized message
models, we investigate the problem with the bounded-sized message
model, and introduce a constant factor approximation algorithm.
To the best known of our knowledge, our result is the first result
of the data collection problem with bounded-sized model in both
interference models.
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I. INTRODUCTION

WSNs consist of a number of tiny wireless sensor devices

(nodes). These nodes are scheduled to turn on their

power to emit signals (i.e., to send data), or turn it off

to conserve their limited power for specific time duration.

When emitting signals, a collision or interference can occur

at a node if the data transmission is interfered by signals

concurrently sent by other nodes. In this case, the data

should be re-transmitted. Because the tiny nodes have limited

energy resources, it is crucial to reduce such unnecessary

retransmissions in order to prolong the network’s lifetime.

One important task of a WSN is to collect data periodically

and send (forward) the data to a sink node in the network. This

type of application is commonly known as data collection.

An interesting approach for the data collection is to assign

timeslots to nodes to obtain a good schedule through which

data from every node is collected to the sink node. Here,

if nodes are assigned the same timeslot in a schedule, then

they can send data concurrently without causing any collision

or interference. The objective of the problem is to compute

schedules with the minimum number of timeslots, that is,

to compute the minimum latency schedules, such that data

from every node can be collected without any collision or

interference.

For the data collection problem, there are three models in

the literature: Unit-sized, bounded-sized, or unbounded-sized
messages. In the unit-sized message model, a node can send a

single unit-sized message at a timeslot, and therefore merging

(combining) messages is not allowed. In the bounded-sized
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message model, a node can merge messages up to some

limit before it sends, whereas in the unbounded-sized message

model, there is no limit on the length of the merged message

[1].

The data collection problem has been widely investigated

by researchers in two interference models: The graph model
and the physical interference model. In the graph model, given

a transmission range r(u) for every node u (i.e., the radius

of the broadcasting disk covered by the signal sent by u
using its transmission power p(u)), the interference range of

u is defined as ρ · r(u), where ρ ≥ 1 is the interference
factor [2]. When ρ = 1, it is called a collision-free graph
model that concerns collision only, and when ρ ≥ 1, it is

called a collision-interference-free graph model that concerns

both collision and interference. Although the traditional graph

model has been widely used in many studies, it is not an

adequate model since cumulative interference caused by all

the other concurrently transmitting nodes is ignored [2]. Thus,

the more realistic physical interference model which is known

as SINR has been used by many researchers for investigating

problems in WSNs since its introduction by Gupta et al. in

[3].

In the graph model, Bermond et al. [9] and Coleri et al.

[23] proved the NP-hardness of the data collection problem

when ρ ≥ 1 and ρ = 1, respectively, with the unit-sized

message model. With the unbounded-sized message model,

the data collection is also known as data aggregation, and

Chen et al. [24] and An et al. [22] proved the NP-hardness

of the problem with ρ = 1 and ρ ≥ 1, respectively.

Because of the NP-hardness of the problem, many researchers

have focused on proposing approximation algorithms, and

the existing approximation algorithms with the unit-sized

and unbounded-sized message models are summarized in

Table I. Note that results in [4]–[6], [8]–[10] apply to

special topologies or general graphs only. Lastly, with the

bounded-sized message model, there currently exist no studies

which investigated the data collection problem, to the best

of our knowledge. There exist few studies [25], [26] which

investigated a related application called gossiping assuming

that messages can be merged into a single message whose

size is bounded by log n, where n is the number of nodes in

a network.

In the SINR model, few researchers have investigated

the data collection problem with the unit-sized message

model, whereas there exists several studies which proposed

approximation algorithms with the unbounded-sized message

model, and Lam et al. [16], [17] showed the first result of

the NP-hardness of the problem with the model. Like the
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TABLE I
EXISTING APPROXIMATION ALGORITHMS FOR DATA COLLECTION

Message Model Graph Model Physical Interference Model
Unit-sized [2], [4]–[6]: 3-approximation (ρ = 1) [2], [7]: O(1)-approximation

[8]: 2-approximation (ρ = 1)
[5]: 4-approximation (ρ > 1)
[2]: O(1)-approximation (ρ > 1)
[9]: 4-approximation (ρ ≥ 1)
[6]: 4-approximation (ρ = 2)

[10]: (1 + 2
ρ
)-approximation (ρ ≥ 2)

Bounded-sized This paper: O(1)-approximation (ρ ≥ 1) This paper: O(1)-approximation
Unbounded-sized [11]–[14]: O(1)-approximation (ρ = 1) [15]–[20]: O(1)-approximation

[21], [22]: O(1)-approximation (ρ ≥ 1)

graph model, there currently exists no studies investigating

the problem with the bounded-sized message model. Existing

approximation algorithms for the data collection in the SINR

model are also summarized in Table I.

In this paper, we continue the study of the data collection

problem in both the graph and SINR models. While

existing works studied the problem with the unit-sized and

unbounded-size message models only, we investigate the

problem with the bounded-sized message model, and introduce

a constant factor approximation algorithm which can be used

not only for the graph model, but also for the SINR model.

This paper is organized as follows. Section II describes

our network models and defines the data collection problem.

In Section III, we introduce a constant factor approximation

algorithm for the problem, and analyze it in Section IV.

Finally, Section IV contains some concluding remarks.

II. PRELIMINARIES

A. Network Models

In this paper, we consider a WSN that consists of a set V of

sensor nodes deployed in a plane. Each node u ∈ V is assigned

a transmission power level p(u), and its transmission range
r(u) is defined as the radius of the broadcasting disk covered

by the signal sent by u using its power p(u). Accordingly, a

directed edge (u, v) exists from node u to node v, if v resides

in u’s broadcasting disk (i.e., d(u, v) ≤ r(u), where d(u, v)
denotes the Euclidean distance between u and v.)

1) Graph Model: Let Cu = {v | v ∈ V, d(u, v) ≤ r(u)}
denote the set of nodes that reside in u’s transmission range.

Then, two nodes u and v can communicate each other if u ∈
Cv and v ∈ Cu. Next, let Iu denotes the set of nodes that

reside in u’s interference range ρ · r(u), where ρ ≥ 1 is the

interference factor. Then, the collision is said to occur at node

w if there exist other concurrently sending nodes u and v such

that w ∈ Cu ∩ Iv , where ρ = 1 (i.e., Cu = Iu). Also, the

interference is said to occur at node w if there exist other

concurrently sending nodes u and v such that w ∈ Cu ∩ Iv ,

where ρ > 1 (i.e., Cu ⊂ Iu).

In the graph model, we model a communication graph as

a directed graph G = (V,E) where E = {(u, v) |u, v ∈
V, d(u, v) ≤ r(u) and d(v, u) ≤ r(v)}.

2) SINR Model: In the SINR model, when a node u sends

data using its power level p(u), the signal sent to a receiver

v may not be strong enough to be received and hence the

transmitted data is lost. It is because the signal sent by u fades

and v is interfered by the cumulative interference caused by all

the other concurrently transmitting nodes. In this model, the

received power at the receiver v is defined as p(u) ·d(u, v)−α,

where α > 2 is the path loss exponent, and v can receive the

data transmitted by the sender u without any interference only

if the ratio of the received power at v to the total interference

caused by all the other concurrently transmitting nodes and

background noise is beyond an SINR threshold β ≥ 1.

Formally, node v can successfully receive data via the

communication edge (u, v) only if

SINR(u,v) =

p(u)
d(u,v)α

N +
∑

w∈X\{u,v}
p(w)

d(w,v)α

≥ β ≥ 1 (1)

where N > 0 is the background noise, and X is the set of

other concurrently transmitting nodes.

As u can send its data to the nodes within the

distance (p(u)Nβ )
1
α (i.e., r(u) = (p(u)Nβ )

1
α ) only, we model

the communication graph as a directional disk graph

G = (V,E), where E = {(u, v) |u, v ∈ V, d(u, v) ≤
(p(u)Nβ )

1
α and d(v, u) ≤ (p(v)Nβ )

1
α }, as in [2].

B. Problem Definition

We define the Minimum Latency Collection Scheduling

(MLCS) problem as follows. Given a set of nodes for a

network in a plane, we assign every node a timeslot such that

nodes assigned the same timeslot, say t, can send data to their

receivers simultaneously, satisfying the following conditions:

• (Graph Model) Neither collision nor interference occurs

at any receiver.

• (SINR Model) The SINR inequality (1) is satisfied for

every receiver.

A schedule is defined as a sequence of such timeslots, (t1,

t2, · · · , tL), where L denotes the latency of the schedule. A

schedule is successful if all data of every node v ∈ V − {s}
is collected to a sink node s ∈ V . See Table II for notations.

III. CONSTANT FACTOR APPROXIMATION ALGORITHM

In this section, we introduce our constant factor

approximation algorithm for the MLCS problem with the

bounded-sized message model where each node can merge

messages into a single message up to size of K before it sends.

We further assume that every node u has its buffer storage

B(u) whose size is unlimited, and is assigned the transmission

power level P , i.e., for every u ∈ V , p(u) = P .
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TABLE II
NOTATIONS

Symbol Definition
r(u) Transmission range of node u
p(u) Transmission power of node u
ρ Interference factor
ρ · r(u) Interference range of node u, ρ ≥ 1
Cu The set of nodes that reside in r(u)
Iu The set of nodes that reside in ρ · r(u)
V The set of nodes
E The set of edges
G A directed graph with V and E (Section II)

A undirected graph with V and E (Section III)
(u, v) A directional edge from u to v (Section II)

A undirectional edge between u and v (Section III)
d(u, v) The Euclidean distance between two nodes u and v
n The number of nodes
α Path loss exponent
β SINR Threshold
N Background noise
X The set of concurrently sending nodes
B(u) The buffer storage of node u
m(u) The message of u
M A merged message
K The limit of the size of a combined message
T A collection tree
�(u) The level of u on T
h The height of T
Si The set of sender nodes whose level is i on T , 1 ≤ i ≤ h
parent(v) A parent node of v on T
t A timeslot
L Latency (i.e., the length of schedule)
ti The i-th timeslot (1 ≤ i ≤ L)

A. Interference Models

We consider both graph and physical interference (SINR)

models with the following assumptions as in [2]:

1) Graph Model: We set the maximum link length (i.e., the

maximum transmission range) r to be the given P , and make

the assumption that the undirected unit disk graph G, where

E = {(u, v) | d(u, v) ≤ r}, is connected and its interference

factor ρ ≥ 1.

2) SINR Model: From the SINR inequality (1) (Section

II), we can compute the possible maximum link length as

rmax = ( P
Nβ )

1
α . We do not consider the links whose length

is rmax because only node u can be a sender to send its

data to some receiver v, where d(u, v) = rmax (i.e., other

nodes cannot transmit concurrently). Thus, we consider the

links (u, v), where d(u, v) ≤ δ( P
Nβ )

1
α , for some constant

δ ∈ (0, 1) as in [15] thereby setting r to be δ( P
Nβ )

1
α . We

also make the assumption that the undirected graph G, where

E = {(u, v) | d(u, v) ≤ r}, is connected and α > 2 [3].

B. Algorithm

MLCS algorithm starts by constructing a collection tree
T which is a breadth-first-search (BFS) tree (cf. [27]) on G
rooted at the sink node s. Then, a number of iterations are

performed to find a schedule based on T . Assigning timeslots

for data collection is based on a constant value H . The value H
guarantees that for any two sender nodes u and u’s descendant

node v on T , if |�(u) − �(v)| ≥ H , then they can send data

simultaneously without interference, where �(u) denotes the

level of u on the T . The constant value H is set as follows in

the two interference models (See Lemmas 1 and 2):

• Graph Model: H = �ρ+ 2�
• SINR Model: H = �{( P ·2π

N(δ−α−1)(α−2) )
1

α−2 } · r−1 + 1�
The details of data collection scheduling are contained in

Algorithms 1 and 2.

Algorithm 1 MLCS

Input: A set V of nodes and a starting time slot t
Output: Length of schedule

1: Construct a collection tree T .
2: for each u ∈ V − {s} do
3: �(u) ← level of u on T
4: B(u) ← {m(u)}
5: Si ← Si ∪ {u} where i = �(u)
6: end for
7: repeat
8: for j = H downto 1 do
9: S ← {Si | i%H = j%H, 1 ≤ i ≤ h}

10: t ← CS(S, t)
11: end for
12: until |B(u)| = 0 for every u ∈ V − {s}
13: return t− 1

Once the collection tree T is constructed (Step 1 in

Algorithm 1), �(u) and B(u) are initialized for every node

u ∈ V − {s}. Then nodes are grouped by each level as S1,

S2, · · · , Sh, where h is the height of T (Steps 2-6 in Algorithm

1).

Algorithm 2 Collection Scheduling (CS)

Input: A set S and a starting time slot t
Output: Timeslot t

1: for each Si ∈ S do
2: Pick one node u ∈ Si whose |B(u)| is largest.
3: if |B(u)| �= 0 then
4: if 0 < |B(u)| ≤ K then
5: Extract all the |B(u)| messages from B(u) and

combine those message into a single message M .
6: else if |B(u)| > K then
7: Extract only |B(u)| messages from B(u) and combine

those messages into a single message M .
8: end if
9: Assign timeslot t to u to send M to parent(u).

10: Store each message in M in parent(u)’s buffer
B(parent(u)).

11: end if
12: end for
13: return t+ 1

Next, each main iteration (Steps 7-12 in Algorithm 1) are

repeated until the sink node s collects messages from all the

other nodes, i.e., |B(u)| = 0 for every u ∈ V −{s}. In details,

each main iteration repeats the following H submain iterations

(Steps 8-11 in Algorithm 1):

• The first submain iteration examines S = {SH , S2H , S3H ,
S4H , · · · }

• The second submain iteration examines S = {SH−1,
S2H−1, S3H−1, S4H−1, · · · }

• · · ·
• The H-th submain iteration examines S = {SH−(H−1),

S2H−(H−1), S3H−(H−1), S4H−(H−1), · · · }
The details of each of the H submain iteration is as follows

(Algorithm 2). For each of the sender sets in S , only one node,
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say u, whose |B(u)| is largest, is chosen. If there are less than

or equal to K messages in its buffer, then extract all the |B(u)|
messages from the buffer, otherwise, if there are more than

K messages in its buffer, then extract only |B(u)| messages

from the buffer. Then the extracted messages are merged into

a single message M , and the node u is scheduled to forward

M to its parent node parent(u) on T at the timeslot t. At the

timeslot t, M is unmerged and the unmerged messages are

buffered at parent(u)’s buffer.

IV. ANALYSIS

In this section, we analyze the Minimum Latency Collection

Scheduling (MLCS) algorithm (Algorithm 1) and bound the

latency of schedules produced by it.

First, we set the constant value H for the graph and SINR

models.

Lemma 1 (Graph Model): For an interference factor ρ ≥ 1,

let H = �ρ + 2�. In MLCS algorithm, for any two nodes u
and u’s descendant v on T , if |�(u) − �(v)| ≥ H , then they

can send data simultaneously without interference.

Proof: Consider a pair of sender and receiver, denoted

by s1 and r1, and let s2 be the closest sender to r1 that does

not interfere with r1. Without loss of generality, let us assume

r1 is a descendant of s1 and s2 is a descendant of r1 on T .

Then, d(r1, s2) > ρ · r. In order to bound the shortest number

of hops between r1 and s2, assume a straight line between r1
and s2, and relay nodes with the power level P on the line.

As we are assuming that r1 and s2 are connected with the

shortest number of hops, we need at least �ρ·r
r � = �ρ� relay

nodes for the connection. This implies that there are at least

�ρ+1� hops between r1 and s2. Thus, in the MLCS algorithm,

we can set H = �ρ+ 2�.

Lemma 2 (SINR Model): For SINR threshold β ≥ 1, path

loss exponent α > 2, background noise N > 0, and

some constant δ ∈ (0, 1), let H = �τ · r−1 + 1�, where

τ = ( P ·2π
N(δ−α−1)(α−2) )

1
α−2 and r = δ( P

Nβ )
1
α . In the MLCS

algorithm, for any two nodes u and u’s descendant v on T ,

if |�(u)− �(v)| ≥ H , then they can send data simultaneously

without interference.

Proof: Consider a sender s1 trying to send its data to its

farthest possible receiver r1, and let s2 be the closest sender to

r1 that does not interfere with r1. Without loss of generality,

let us assume r1 is a descendant of s1 and s2 is a descendant

of r1 on T . Then τ =
Ä

P ·2π
N(δ−α−1)(α−2)

ä 1
α−2

is a lower bound

for the shortest distance between r1 and s2 [28], and therefore

d(r1, s2) ≥ τ .

Next, let us bound the shortest number of hops between r1
and s2 as follows. Assume a straight line between r1 and s2,

and relay nodes with the power level P on the line. As we

are assuming that r1 and s2 are connected with the shortest

number of hops, we need at least �τ · r−1 − 1� relay nodes

for the connection. This implies that there are �τ · r−1� hops

between r1 and s2. Thus, in the MLCS algorithm, we can set

H = �τ · r−1 + 1�.

Next, we bound the latency of the data collection schedules

produced by the algorithm.

Lemma 3 (Lower Bound): If n is the number of nodes

in a network, then every data collection schedule with

bounded-sized model where several messages can be merged

into a single message whose size is bounded by K takes at

least 	n−1
K 
 timeslots.

Proof: Consider a node u, and n − 1 messages that

the node u has to receive. As a node can merge up to

K messages, the node must receive at least 	n−1
K 
 distinct

messages. Therefore, any data collection schedule allowed

to merge messages up to size of K needs at least 	n−1
K 


timeslots.

Theorem 4: The MLCS algorithm collects data from all the

other nodes successfully to sink node s with at most H ·�n−1
K �

timeslots, and it is a constant-factor approximation with the

factor of 2H .

Proof: First note that there are n − 1 messages that

the sink node s must receive. In the MLCS algorithm, s
receives single merged message every H timeslot, and as

the subroutine, Collection-Scheduling algorithm (Algorithm

2), merges messages up to size of K, s receives at most �n−1
K �

messages to collect data without collision or interference

(Lemmas 1 and 2). Therefore, it takes at most H · �n−1
K �

timeslots.

Next, letting SOL denote the upper bound of the latency

of the algorithm, and OPT be the lower bound (Lemma 3),

we get SOL
OPT ≤ H·�n−1

K �
�n−1

K � ≤ 2H . Thus, it is an approximation

algorithm with the constant-factor of 2H .

V. CONCLUSION

In this paper, we focused on the Minimum Latency

Collection Scheduling (MLCS) problem of WSNs in the graph

model as well as the more realistic physical interference

model known as SINR. We proposed a O(1)-approximation

algorithm that works in both the interference models with

bounded-sized message model. To the best known of our

knowledge, our result is the first result of the problem with

bounded-sized model in both interference models. For future

work, we plan to study another related problem, gossiping,

adopting both the interference models with bounded-sized

message model.
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