
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:5, 2016

926

Characterization of the Near-Wake of an Ahmed
Body Profile

Stéphanie Pellerin, Bérengère Podvin, Luc Pastur

Abstract—In aerovehicles context, the flow around an Ahmed
body profile is simulated using the velocity-vorticity formulation of
the Navier-Stokes equations, associated to a penalization method for
solids and Large Eddy Simulation for turbulence. The study focuses
both on the ground influence on the flow and on the dissymetry of
the wake, observed for a ground clearance greater than 10% of the
body height H . Unsteady and mean flows are presented and analyzed.
POD study completes the analysis and gives information on the most
energetic structures of the flow.
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I. INTRODUCTION

DRAG reduction of separated flows are current topics

of automobile industry applications. A thorough

understanding of the physics of unsteady separation in the

absence of control is therefore required in order to define and

evaluate the action of upstream wall actuators. More than 30%

of the drag of automobile vehicles is due to phenomena that

occur in the vicinity of the rear window, which emphasizes the

necessity to modify the vortex dynamics in the recirculation

region and in the near wake.

II. NUMERICAL APPROACH

A. Large Eddy Simulation Using the (v − ω) Formulation

The numerical method is based on the (v − ω)
velocity-vorticity formulation for incompressible flows,

allowing an accurate simulation of a given configuration and

a direct manipulation of the flow through modification of the

vorticity at the boundary. The turbulent behavior is modeled

with Large Eddy Simulation using the filtered Navier-Stokes

equations obtained by means of the subgrid decomposition.

The exact field is split into filtered variables and subgrid

variables. The filtered Navier-Stokes equations using the (v−
ω) formulation are given as:

∂ω

∂t
−∇× (v × ω) = −Re−1 ∇×∇× ω +∇× τ (1)

ω = ∇× v ∇ · v = 0 (2)

where Re is the Reynolds number, v the filtered velocity

vector and ω its curl, resolved on the grid. The vector τ
representing the subgrid scale contributions is function of the
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subgrid viscosity νsgs, as follows, τ = − νsg

Re ∇×ω. The mixed

scale subgrid model, developed in LIMSI [1], is chosen is this

study:

νsg =
(
C2

SΔ
2‖ω‖)α (CBΔ‖u′‖)(1−α)

(3)

where k corresponds to a kinetic energy associated with

the subgrid cell. Classical vorticity and TKE models are

respectively obtained for values 0 or 1 of the exponent α, taken

equal to 0.5 in this study. CS and CB correspond respectively

to the Smagorinsky and Bardina constants. Δ is a characteristic

length of the local cell. This model has the advantage to damp

smoothly the eddy viscosity in the regions where all the scales

are well resolved.

B. Penalization Method

Solid are modelled through a penalization method, adapted

to the (v−ω) formulation of the Navier-Stokes equations. The

velocity and vorticity fields are imposed equal to zero inside

the solids. The vorticity vector needs to be zero inside the solid

at each time step, which is enforced by setting ∂ω
dt = 0. The

diffusive terms of (1) are cancelled, at each time step, using

a penalization matrix. On a given solid surface, the tangential

velocity is zero. The vorticity field at the wall (tangential

components) is then calculated from velocity derivatives.

C. Resolution

A M.A.C. staggered grid is used for the spatial

discretization. Time and spatial discretizations use 2nd order

schemes. The coupled Helmholtz problem of the vorticity

transport equation is solved with a block Jacobi iterative

algorithm. The velocity field is then obtained through a

projection method [2].

An infinite upstream velocity U∞ is imposed at the inlet

of the domain from which the tangential components of

the vorticity are deduced. Perturbations (white noise) are

superimposed on them to obtain the correct development of

the turbulent flow. At the outlet surface, a convective transport

hypothesis is applied (viscous effects (v − ω) neglegted).

The vorticity tangential components are calculated using an

extrapolation along the characteristics. In the vertical direction

y, slip conditions are imposed at the lower and upper surfaces.

A periodicity condition is used for the transverse direction z.

III. MODELIZATION

The chosen configuration is an Ahmed body [3] which has

a sharp rear corner, above a flat surface. It models a ground

vehicle on the road. The characteristic length of the problem
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is the body height H . A set of geometries have been tested,

using as reference the experimental model of Grandemange et
al. [4]. The Ahmed body has a bluff shape in both transverse

directions. Most of the simulations performed used a body

with a lenght L about 3.63 H and a spanwise dimension l
about 1.35 H [3]. Much effort has been put into making the

numerical configuration similar to the experiment [4].

For this 3D unsteady turbulent flow, the grids used depend

on the domain size considered and vary from about 5 to

10 million points. The flow develops along the streamwise

direction x, on a regular grid. The spanwise mesh in the

direction z is also associated with a regular discretization.

Only the vertical direction y is inhomogeneous. The mesh

is refined at the top and the bottom of the body. In most of

the cases presented here, the Ahmed body is modelled using

nxA(228)× nyA(65)× nzA(49) points.

The computational domain corresponds to Lx from 8 to 11

H , Ly to 1.8 H and Lz from 2 to 3 H . The Ahmed body is

centered in the computational domain along the z direction.

The wake can develop over 1.1 − 1.9 L after the end of the

body and the last separation on the roof.

IV. RESULTS

Simulation of an incompressible 3D turbulent flow

around an Ahmed body is then performed using LES, the

(v − ω) formulation and an adapted penalization method

for the Ahmed body and the flat plate if its occurs.

Experiments have shown that the flow is characterized by

a bi-stability behavior, between two conjugated reflectional

symmetry-breaking (RSB) wakes [5]. The existence and the

mode switching dynamics, which depend on the ground

clearance of the Ahmed body C, constitutes the focus of our

study. A non-dimensional ground clearance is then defined

C∗ = C/H .

Simulations are performed for Re = 1.7 × 104, based on

U∞ = 10 m · s−1, the fluid viscosity νair and the body

height H . The flow is initially at rest. The flow develops over

a rather long time to obtain a turbulent unsteady state [8]. For

different cases with and without ground, the unsteady flow is

studied through velocity and vorticity fields, and the mean flow

is analyzed, focusing on dissymmetry of the near wake. The

turbulent statistics of the flow are computed. The pressure field

is of particular interest as it is a quantity readily accessible in

experiments.

A. Unsteady Field

The unsteady fields in Figs. 1 to 4 show a 3D fully

turbulent flow, with a large set of scales and numerous vortices,

convected with the wake. The spanwise component of the

vorticity ωz is represented in Fig. 1, in a middle vertical plane

(xy). Two separation zones occur close to the front of the body

and at the end of the body numerous vortices are ejected in

the mixing zone. When the ground clearance C decreases, the

shedding progressively disappears at the bottom of the body,

and the wake is progressively attracted by the ground.

Fig. 2 represents the vertical component of the vorticity ωy

in horizontal planes (zx) (top-view), without ground. The two

(a) C∗ = ∞

(b) C∗ = 10

(c) C∗ = 5

(d) C∗ = 0

Fig. 1 Unsteady field: Spanwise vorticity ωz in a middle plane (xy), (a)
C∗ = ∞ (without ground), (b) with a ground for C∗ = 10, (c) for C∗ = 5

and (d) for C∗ = 0 (body on the ground)

(a)

(b)

Fig. 2 Unsteady field without ground, C∗ = ∞: Vertical vorticity ωy in
top-view horizontal planes (zx), at (a) half-height of the body and (b)

1/100 H from the top of the body

separation zones at each side are rather symmetric and the

alternated shedding vortices are convected in the wake. The

wake is only influenced by the shape of the body. At the top

of the Ahmed body, the flow is less disturbed.
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(1) C∗ = 10 (2) C∗ = 5
(a)

(b)

(c)

Fig. 3 Unsteady field in presence of a flat plate (ground): Vertical vorticity
ωy in top-view horizontal planes (zx), for two ground clearances C∗, at
different distances from the top of the body, (a) 3/4 H , (b) 1/2 H , (c)

1/4 H

(a)

(b)

(c)

Fig. 4 Unsteady field when the body is on the ground, C∗ = 0: Vertical
vorticity ωy in top-view horizontal planes (zx), at different distances from

the top of the body, (a) 3/4 H , (b) 1/2 H , (c) 1/4 H

For the cases with a ground (Figs. 3 and 4), clear differences

are observed between the bottom and the top of the body, due

to the presence of the wall. The ground modifies clearly the

wake over half of the body height for C∗ = 10 (Fig. 3). In

contrast, its effects are felt over the full body height, in the

case of a body on the ground for C∗ = 0 (Fig. 4).

(a) C∗ = ∞

(b) C∗ = 0

Fig. 5 Mean field: Longitudinal velocity < vx > and stream function in a
middle plane (xy), (a) without ground C∗ = ∞ and (b) C∗ = 0

(a) C∗ = 17

(b) C∗ = 12

(c) C∗ = 10

Fig. 6 Zooms of mean field in the vicinity of the back face: Longitudinal
velocity < vx > and stream function in a middle plane (xy), in presence of

a flat plate

B. Mean Field

The mean flow is calculated using a set of unsteady fields

recorded successively, over a time-integration interval which

may depends on the case considered. Fig. 5 represents the

time-averaged streamlines of the flow, projected in the vertical

mid-plane (xy), colored by the time-averaged longitudinal

velocity < vx >. A first recirculation zone is well described

on the roof. The second equivalent zone, on the bottom of

the body, interacts progressively with the boundary layer and

then disappears when the clearance C decreases. In case

without ground (Fig. 5 (a)), the two recirculation zones in the

wake are rather symmetric and their lengths can be estimated

approximately about 1.2H .

Fig. 6 zooms in the near-wake for different values of C∗.

When C∗ increases from 0, the behavior of the downstream
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(a) C∗ = ∞

(b) C∗ = 17

(c) C∗ = 0

Fig. 7 Mean field: Turbulent kinetic energy k and stream function in a
middle plane (xy), (a) without ground C∗ = ∞, (b) with a ground for

C∗ = 17 and (c) on the ground C∗ = 0

recirculation zones changes considerably. The velocity of the

flow increases under the body and the lower recirculation zone

appears and grows. The length of the zones also increases until

about 2.5H .

The turbulent kinetic energy k = 1
2

∑
< v′2i > is

represented in Fig. 7, where v′i is the time fluctuation of

the velocity component vi. The maxima values are rather

symmetric in the case without ground. The lower maximum

disappears progressively when C decreases.

Fig. 8 represents the time-averaged streamlines of the flow,

projected in a horizontal mid-plane (zx) or top-view, colored

by the time-averaged longitudinal velocity < vx >. The

influence of the ground clearance is evidenced. For C∗ = 0,

the wake is symmetric with respect to the (xy) mid-plane,

whereas for C∗ > 0.1 the left/right symmetry has been broken.

This is in agreement with the so-called RSB-wakes observed

experimentally, as shown for instance in [4], [5], beyond a

critical value of C∗. The case C∗ = 0.1 is not exactly

symmetric due to slightly lack of convergence in the mean

field. Note that the bistability phenomenon reported in [4], [5]

has not been observed in our LES yet because the observation

time is smaller than the mean value of the persistence time of

the RSB wake. It is however expected that longer runs might

exhibit transitions between both reflectional-conjugated wakes.

C. Proper Orthogonal Decomposition

POD (Proper Orthogonal Decomposition) is a statistical

technique introduced by Lumley [6] in turbulence which

extracts the spatial patterns (POD modes) which are best

correlated with a spatio-temporal field on average. To solve

the problem when the field spatial dimension is very large,

Sirovich [7] introduced the method of snapshots, which makes

(a) C∗ = ∞

(b) C∗ = 10

(c) C∗ = 0

Fig. 8 Mean field: Longitudinal velocity < vx > and stream function in an
half-body horizontal plane (zx), (a) without ground C∗ = ∞, (b) with a

ground for C∗ = 10 and (c) on the ground C∗ = 0

it possible to recover the POD spatial modes from the temporal

autocorrelation tensor (instead of the spatial autocorrelation

tensor in the original method proposed by Lumley).

POD was applied to the 3D velocity fields over the full

domain for the two limiting cases of C∗ = ∞ (no ground

effect) and C∗ = 0 (body on the ground). The idea is to write

the velocity field as:

u(x, y, z, t) =
∑

n

an(t)φn(x, y, z) (4)

where φn(x, y, z) represents the spatial pattern or POD mode

and an(t) represents the temporal amplitude of the mode. By

construction the POD modes are orthogonal and the temporal

amplitudes are uncorrelated i.e.:

< an(t)am(t) >= δnmλn (5)

where <> represents a time average, δmn is the Krönecker

symbol and λn is the energy of the POD mode n.

The first POD mode corresponds to the mean mode of

velocity described in the Section IV-B, as can be seen in Fig.

9 for an horizontal mid-plane. The mean pressure on the same

plane is also shown in Fig. 10 for both limiting cases C∗ = ∞
and C∗ = 0. This confirms that spanwise asymmetry is present
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(a) C∗ = ∞ (b) C∗ = 0

Fig. 9 Longitudinal velocity component vx of the first POD mode on a
horizontal plane (zx) at mid-height of the body, (a) without ground

C∗ = ∞ and (b) body on the ground C∗ = 0

(a) C∗ = ∞ (b) C∗ = 0

Fig. 10 First POD mode of the pressure field on a horizontal plane (zx) at
mid-height of the body, (a) without ground C∗ = ∞ and (b) body on the

ground C∗ = 0

when the distance between the body and the ground is large

enough, but disappears when the body lies on the ground.

The POD spectrum representing the energy of the modes

λn is presented in Fig. 11 and is seen to be quite similar for

both cases. The next two most energetic modes are of nearly

equal value and correspond to Von Karman-like modes, which

represent the shedding of vortices behind the body. The two

modes correspond to the travelling wave nature of the spatial

pattern. This pattern in a longitudinal plane is represented in

Fig. 12. The Von Karman-like street is clearly noticeable. The

size of the vortices is about H .

The temporal amplitudes corresponding to these two modes

are represented in Fig. 13. The wave-like nature of the mode

is confirmed. The nondimensional characteristic frequencies

(a) C∗ = ∞ (b) C∗ = 0

Fig. 11 POD spectrum of the full 3D velocity field, (a) without ground
C∗ = ∞ and (b) body on the ground C∗ = 0

2nd mode

3rd mode

(a) C∗ = ∞

2nd mode

3rd mode

(b) C∗ = 0

Fig. 12 Longitudinal velocity component vx of the second and third POD
modes in the mid-section longitudinal plane (xy), (a) without ground

C∗ = ∞ and (b) body on the ground C∗ = 0

(a) C∗ = ∞ (b) C∗ = 0

Fig. 13 Temporal amplitudes of the second and third POD modes for the
longitudinal velocity vx, as function of non-dimensional time. (a) without

ground C∗ = ∞ and (b) body on the ground C∗ = 0

of the case C∗ = 0 and C∗ = ∞ are respectively f0 = 0.22
and f∞ = 0.26, in agreement with experimental observations

[4].

V. CONCLUSION

The flow around an Ahmed body profile has been calculated

using LES, the (v − ω) formulation and a penalization

method for solids. The influence of the ground clearance

on the symmetry of the wake has been evidenced. The
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symmetry-breaking of the wake has been recovered by LES

for large enough ground clearance. Switching dynamics was

not observed due to simulation timing. This study allows us to

extract from the full simulation of the flow the relevant spatial

and temporal scales.
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