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Regression

Yuzhi Cai

Abstract—In this paper, we discuss a Bayesian approach to
quantile autoregressive (QAR) time series model estimation and
forecasting. Together with a combining forecasts technique, we then
predict USD to GBP currency exchange rates. Combined forecasts
contain all the information captured by the fitted QAR models
at different quantile levels and are therefore better than those
obtained from individual models. Our results show that an unequally
weighted combining method performs better than other forecasting
methodology. We found that a median AR model can perform well in
point forecasting when the predictive density functions are symmetric.
However, in practice, using the median AR model alone may involve
the loss of information about the data captured by other QAR models.
We recommend that combined forecasts should be used whenever
possible.
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I. INTRODUCTION

KOENKER [1] gives an excellent introduction to

the quantile regression method. A general quantile

regression model may be defined by

qτY |x = h(βτ ,x),

where Y is a response variable, x a vector of covariates, βτ is

a vector of model parameters, depending on τ , 0 < τ < 1 such

that P (Y ≤ h(βτ ,x) | x) = τ . A special quantile regression

is given by

qτY |x = β0τ + β1τx1 + · · ·+ βpτxp .

The parameters of the model may be estimated by solving the

minimization problem

min
βτ

n∑
i=1

ρτ (ui)

where

ρτ (u) = u(τ − I[u<0])

and

ui = yi − h(βτ ,xi).

This model has also been generalized to deal with time

series. The QAR is defined by

qτyt|yt−1
= β0τ + β1τyt−1 + · · ·+ βpτyt−p = y�

t−1βτ , (1)

where p is the order of the model, yt−1 =
(1, yt−1, . . . , yt−p)

�, and βτ = (β0τ , β1τ , . . . , βpτ )
� is

a vector of the model parameters.

Y. Cai is with the School of Management, Swansea University, United
Kingdom (e-mail: y.cai@swansea.ac.uk).

Note that βτ can also be estimated by minimizing

T∑
t=p+1

ρτ (yt − y�
t−1βτ ). (2)

So, if yt represents the log return on the exchange rates of

interest, then for τ = 0.5, we have an estimated median of

yt conditional on yt−1. However, in practice, we are also

interested in predicting the value of yt or the distribution of yt.
Some work can be found in the literature on forecasting with

quantile regression models. For example, the work of [3] used

exponentially weighted quantile regression to forecast daily

supermarket sales; [4] considered the quantile forecasting for

credit risk management; and [5] studied Bayesian time-varying

quantile forecasting for value-at-risk in financial markets. In

this paper, we explain how to forecasting by using the QAR

model based on the work of [2].

II. THE ESTIMATION AND FORECASTING METHOD

The method of [2] is based on a Bayesian approach. Let

yp = (y1, y2, . . . , yp). Let y = (yp+1, yp+2, . . . , yT ). Let

yT+M,τ = (yT+1,τ , . . . , yT+M,τ ), i.e. the unknown future

values of the process coming from model (1). Then the

Likelihood of (y,yT+M,τ ):

L(y,yT+M,τ | βτ ,yp)

= {τ(1− τ)}T+M−p exp
{
−∑T+M

t=p+1 ρτ (yt − y�
t−1βτ )

}
,

(3)

where yt = yt,τ if t > T .

It is seen that if we can estimate both βτ and yT+M,τ

then we will have an estimated model and we will also have

forecasts of the process up to time T + M . Reference [2]

proposed a Bayesian method to estimate them. However, the

estimated quantities depend on τ . That is, we have a sequence

of models and a sequence of forecasts. So, which model should

we use and which forecasts should we take? We summarize

the combining method proposed by [2] below and will explain

how their method is used for the exchange rate data in next

section.

Let

Aτi =
{
(y

(�)
T+1,τi

, . . . , y
(�)
T+M,τi

), � = 1, . . . , L
}

be the posterior sample of yT+M,τi obtained from the τith
QAR model, where i = 1, . . . , I , let ατi ∈ (0, 1) be combining

weights such that ατi ≥ 0 and
∑I

i=1 ατi = 1. Then the

combining forecasting method consists the following several

steps:

(1) Constructing a combined sample:
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(i) obtain a sub-sample of size [Lατi ] from Aτi , where

[·] stands for the integer part of a number and i =
1, . . . , I;

(ii) put all sub-samples together to form a combined

sample A.

(2) Using the combined samples in A to estimate the

predictive density functions and/or any other predictive

quantities.

For the combining weight, we consider two cases.

(a) α0.05 = α0.95 = 0.05, α0.25 = α0.75 = 0.20 and α0.5 =
0.5.

(b) Use all posterior samples from all fitted QAR models.

So for (a), for example, the median QAR model contributes

50% of their samples to the combined forecasts, while for (b),

each fitted QAR model makes the same contribution to the

final forecasts,

III. APPLICATION

We consider the log returns, denoted by yt, of exchange rate

USD/GBP for the period from 2 January 1997 to 21 November

2000. The length of the log-return time series is 974. The last

6 values were used to allow comparisons with the forecast

results. The observed time series is shown in Fig. 1.

A sequence of models with different orders and τs were

estimated, and we found that, according to BIC, model

QAR(1) was the best. So we only discuss this model below.

The estimated parameters are shown in Fig. 2 by the vertical

lines for τ = 0.05, 0.25, 0.5, 0.75 and 0.95. For each τ , we can

also estimate the conditional quantiles of the returns at each

time t. Fig. 3 shows these conditional quantiles, where the

grey curve represents the observed return yt. However, how

do we know whether the estimated models are good or not?

One way to check this is to check the global coverage of the

estimated conditional quantiles. Table I shows the results. It is

seen that estimated coverage is very close to the true value of

τ , suggesting that the estimated models are very good, hence,

could be used for forecasting.

Now, we consider the 1-step ahead forecasts. For fixed t, we

have a sequence of yt values when τ changes. So we actually

have a discrete probability density function (pdf) of yt. Then

smoothing spline technique could be used to obtain a smoothed

pdf. Fig. 4 presents the estimated 1-step ahead predictive

conditional density functions for the last 10 days’ log-returns.

This shows clearly that the conditional distributions of the

log-returns changes across time. This also illustrates that QAR

models can allow us to study any specific feature of a time

series at any time point.

For out of sample forecasts, We used the weights (a) and

(b) to combine posterior samples obtained from the models

for different quantiles. Fig. 5 shows the predictive density

functions up to 6-steps ahead. It is seen that weights (a)

produces much shorter predictive credible intervals than those

using weights (b). As in practice a change of log-return of

more than 20% is very rare, forecasts obtained from weights

(a) are more reasonable than those obtained from weights (b).

We may also obtain point forecasts for yt. Table II shows

the observed log-returns and predicted log-returns based on

Fig. 1 Time series plots of the USD to GBP daily currency exchange rates
and the associated log-return series

Fig. 2 Bayesian estimates of model parameters

Fig. 3 Estimated conditional quantiles of yt

individual QAR models and combined forecasts using weights
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TABLE I
EMPIRICAL COVERAGE OF THE ESTIMATED CONDITIONAL QUANTILE CURVES FOR THE QAR(1) MODEL FITTED TO THE USD TO GBP DAILY

CURRENCY EXCHANGE DATA

τ 0.05 0.25 0.5 0.75 0.95
Number out of 968 45 236 483 724 922

Proportion 0.046 0.24 0.50 0.75 0.95

Fig. 4 1-step ahead predictive conditional density functions at times
t = 959, . . . , 968

Fig. 5 Predictive conditional density functions up to 6-steps ahead. Darker
(lighter) curves for weights (a) and (b) respectively

(a) and (b). MSEs between observed and predicted log-returns

are also given. These results also show that the combined

forecasts obtained from weights (a) are better than those from

weights (b).

IV. CONCLUSIONS

We showed how to use a QAR model to analyze returns on

currency exchange rates. We discussed a combining forecast

technique to improve the quality of the forecasts obtained from

a sequence of fitted QAR models. We also showed the density

forecasts of the exchange rates. We found that the distribution

of the exchange rates depends on time t. We also showed the

point forecasts of the exchange rates. We found that a median

AR model can perform well in point forecasts when the

predictive density functions are symmetric. Our results suggest

that combined forecasts are better than those obtained from

individual models. We therefore recommend that combined

forecasts should be used whenever possible in practice. We

also found that combining weights (a) performs better than

weights (b). However, the optimal weights for QAR models

need further investigation in the future.
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TABLE II
OBSERVED LOG-RETURNS AND PREDICTED LOG-RETURNS BASED ON INDIVIDUAL QAR MODELS AND USING WEIGHTS (A) AND (B): MSES

BETWEEN OBSERVED AND PREDICTED LOG-RETURNS ARE ALSO GIVEN

m 1 2 3 4 5 6 MSE
Observed 0.000 −0.308 −0.253 0.028 −0.070 −0.38
τ = 0.05 18.508 19.907 18.510 18.267 17.706 18.87
τ = 0.25 2.379 2.538 2.696 2.607 2.430 2.609
τ = 0.5 −0.080 0.064 0.083 0.086 0.095 −0.16
τ = 0.75 −2.192 −2.601 −2.411 −2.392 −2.468 −2.60
τ = 0.95 −18.789 −21.351 −22.269 −23.381 −23.277 −22.674

Weights (a) −0.045 −0.087 −0.078 −0.160 −0.244 −0.271 0.027
Weights (b) −0.035 −0.289 −0.678 −0.963 −1.103 −0.791 0.400
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