International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:10, No:3, 2016

Network-Constrained AC Unit Commitment under
Uncertainty Using a Bender’s Decomposition
Approach
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Abstract—In this work, the system evaluates the impact of
considering a stochastic approach on the day ahead basis Unit
Commitment. Comparisons between stochastic and deterministic
Unit Commitment solutions are provided. The Unit Commitment
model consists in the minimization of the total operation costs
considering unit’s technical constraints like ramping rates, minimum
up and down time. Load shedding and wind power spilling is
acceptable, but at inflated operational costs. The evaluation process
consists in the calculation of the optimal unit commitment and in
verifying the fulfillment of the considered constraints. For the
calculation of the optimal unit commitment, an algorithm based on
the Benders Decomposition, namely on the Dual Dynamic
Programming, was developed. Two approaches were considered on
the construction of stochastic solutions. Data related to wind power
outputs from two different operational days are considered on the
analysis. Stochastic and deterministic solutions are compared based
on the actual measured wind power output at the operational day.
Through a technique capability of finding representative wind power
scenarios and its probabilities, the system can analyze a more detailed
process about the expected final operational cost.

Keywords—Benders’ decomposition, network constrained AC
unit commitment, stochastic programming, wind power uncertainty.

1. INTRODUCTION

IT Commitment (UC) is a crucial short-term decision-
making problem in power system operations, whose
objective is to determine the least-cost commitment and
dispatch of generating units to serve the load. The
deterministic form of the UC problem and its solution strategies
are extensively documented in the literature, e.g., [1]-[3].
However, the recent increase of stochastic production units,
especially wind power, in generation portfolios calls for a
stochastic form of the UC problem, instead of a deterministic
one. Moreover, a precise modeling of the physical laws
characterizing this problem is needed as increasing wind
power production generally results in stressed operating
conditions. Hence, the need for an AC modeling arises.
Large-scale integration of wind power increases
significantly the level of uncertainty [4], hence the need of a
stochastic UC approach. The stochastic UC problem was first
studied in mid 1990s [5], [6]. More recent works include [7]—
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[9]. These approaches embed a dc representation of
transmission system, rendering a mixed-integer linear UC
problem (network-constrained dc-UC problem), which is
generally tractable [10]-[13]. It is worth mentioning that due
to the simplifications considered in the dc-UC problems, i.e.,
the exclusion of voltage magnitude and reactive power
constraints, an ex-post verification is required to check that the
results obtained are implementable.

A UC problem including an AC network representation
(network-constrained ~ ac-UC  problem)  provides a
comparatively more precise description of power system
operations, particularly as operating conditions become
increasingly stressed due to increasing wind production.
However, the ac unit commitment (ac-UC) problem is mixed-
integer nonlinear, and thus hard to solve. In the technical
literature, there are few works addressing the ac-UC problem.
Reference [14] proposes an approach based on Benders’
decomposition to solve an AC network-constrained
hydrothermal scheduling problem. A security-constrained ac-
UC problem is proposed in [15], whose objective is to
minimize the system’s operating cost while maintaining
appropriate security. The solution strategy proposed in [15] is
to decompose the original ac-UC problem into a master
problem without enforcing the network constraints, and a
subproblem to check the feasibility of the master solution from
the network constraint point of view. Note that wind power
uncertainty is not modeled either in [14] or [15]. References
[16], [17] formulate a security-constrained stochastic ac-UC
problem under wind power uncertainty, and discusses
potential solution techniques, but numerical results are not
reported.

This paper presents a network-constrained ac-UC problem
in which the wind power uncertainty is characterized by a set
of suitable scenarios. To cope with wind power uncertainty, a
two-stage stochastic programming model is considered, whose
first-stage represents the day-ahead market, and whose second-
stage represents the real-time operating conditions involving
wind power realizations.

II. AC-UC MODEL

A. Stochastic Programming

Linear programming is a mathematical method to optimize
a function given a set of constraints which are linear in nature.
But not always are the constraints linear. That let us to non-
linear programming where the constraints become non-linear
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& further improving on it comes Stochastic Programming
where the constraints are based on random variables.
Stochastic programming is a framework for modeling
optimization problems involving uncertainty. There are more
or less always some unknown parameters involved in real
world optimization problems, which are assumed to follow
some probability distributions. There are 3 main types of
stochastic programming models:
e Anticipative model: Every decision is taken without
knowing anything about the future.
e Adaptive model: Some information is available about the
uncertain future before the decisions are made.
¢ Recourse model: Combines the above 2 models. Here
some of the decisions are anticipative & some are
adaptive.
A Stochastic 2-Stage Fixed Recourse problem looks like:

Min ¢l x+Q(x) (1
s.t, Ay =b,x=>0

where;

QM=% p;Q0x))
J

Here, it is assumed that the random variable £ has a discrete

distribution where

Prob(§ = &) = p; for every j 2
B. Bender’s Decomposition

Bender’s Decomposition in simple words is a way to divide
complicated mathematical programming problems into 2 parts
thereby simplifying the solution by solving one master
problem & one sub-problem. In Stochastic Programming it is
more common to refer to bender’s decomposition as the L-
shaped decomposition method.

Bender’s Decomposition can be divided into 2 stages:

e Feasibility Cut
e  Optimality Cut

1. Feasibility Cut

Feasibility cut is actually a constraint on the 1% stage
variables. For a particular solution x = 0 of the 1st stage
problem we need to check if it will yield feasible 2™ stage
problems for all possible scenarios. If for any value of & the
2" stage problem becomes infeasible then immediately it
generates a feasibility cut so that it removes that particular
solution from the solution set. Thus feasibility cuts are
generated to make the 2" stage problems feasible.

2. Optimality Cut

Optimality cuts are constraints based on the Ist stage
variables x as well as 0. Optimality cuts are generated only
after all the feasible cuts are found. The idea of the optimality
cut is to gradually take us towards the optimal solution. The
system see that our original problem is a minimization
problem. So, it will be helpful if it could find a lower bound of

0. Optimality cuts can therefore be looked upon as lower
bounds of 0.

B. Modeling Assumptions

For the sake of clarity, the modeling assumptions
considered in this work are listed as follows:

» The first-stage of the proposed UC problem (that
represents the day-ahead market) embodies a dc network
representation, while the second-stage (that represents the
real-time operation) embeds an ac one. This assumption is
consistent with the functioning of most real-world
electricity markets.

» For the sake of simplicity, only wind power uncertainty is
taken into account. However, other uncertainties can be
incorporated into the model. The uncertainty of wind
power production is modeled through a set of plausible
scenarios based on the available forecasted data.

» The minimum up-time and minimum down-time

constraints of thermal units are not considered in this

paper. To consider them, additional binary variables are

required [18].

A number of units are available to provide reserve.

The wind power production cost is assumed to be nil.

All loads are assumed to be inelastic.

Wind farms of Type 3 DFIG and Type 4 full converter are

able to provide voltage support in steady-state and

dynamically [19]. However, for the sake of simplicity, we
assume unit power factor for all wind farms.

» The security constraints are not modeled in this work.
However, such constraints can be easily incorporated in
the proposed framework.

YV VY

C. Formulation

The considered two-stage ac-UC problem is formulated as
(3)-(23). Objective function (1) represents the system’s
expected cost, and is subject to first-stage constraints (2) and
second stage constraints (3). The optimization variables of the
ac-UC problem (1)—(3) are the elements of the set:

e - [csY +ciPitDA]+
(icG)t
3
Sal T gt T vEH) ©

s 7 (ieG)t (deD)t

The first two terms of (3) correspond to the system’s cost at
scheduling time (first-stage), while the other two terms refer to
the expected cost in real-time operation (second-stage). The
first term represents the start-up cost of the units, the second
one refers to their production cost, and the third term
represents the reserve deployment cost. Note that the reserve
deployment cost (third term) refers to the production cost of
the additional energy produced in real-time operation to offset
the energy imbalance occurred due to wind power variability.
This term is in fact the product of the generating unit’s
marginal cost and the production increment from day-ahead to
real-time operation. Finally, the last term of (3) is the load
curtailment cost.
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The first-stage constraints are:

PPAL = wPro T Lf -

(Gt T (kek)t ©  ded, mean Pani (0),
Vo Vi 4)
Piu, < PitDA s Bia v, € GV, (5)
o<W, SWR' v, ek.v, 6)
- DA ini

In

T

<
m
@

-Ry <[Rt=1y R (7

- DA DA +
-R, < [Pi(tzl) - Pi(t=1)] SR ,V,eGv, >1 ()

SOy s VT ©

DA
Opaye = 0, vt (10)

DA _
ant (Q)SSnm’ vn’vmeQn’vt (11)

SU SU ini
Citct=1) =4 Uiy ~4 1, Y, €G (12)
SU SuU

Cit(t:l) 2 A Wiy ~ Ui, v, € GV > 1 (13)

su
Cit

>0, VY, €G,V, (14)

Constraints (4) represent the active power balance at
scheduling time at each node and for each time period.
Constraints (5) and (6) enforce the lower and upper bounds for
active power production of generating units and wind farms,
respectively. Constraints (7) and (8) ensure that the hourly
changes of scheduled power do not violate the ramp-rate
limits. Constraints (9) enforce lower and upper bounds of
voltage angles. Constraints (10) set as the reference node. The
capacity of each transmission line is enforced through (11).
Constraints (12)—(14) allow calculating the start-up cost of the
units.

The second-stage constraints are:

S
Z (PltDA + rits) + z (Wkts_WktsP) v .V .Y (15)
(i€Gp) kekp >t s

Y Q.- 2 9= T QPw, 0
(ieG)t * ded, « meQ, m ’
V.oV Y (16)
SH p
O0=<L g=Ly, VY €D V.V, (17)
SP
0<W,. <W,, vkeK,V,V, (18)
D U
R =n, SR viecv,v, (19)
DA

IN

Piug <[r R 1<PRu viee.v.v, (20)

QiU = Q < aiuit , Vie G,V Y, (21)

- DA ini ini +
R = IR=)) ~faanys) — (R +5 ) =R

>

Vv, €G,Vs (22)
- DA DA n
_Ri <[(R + rits) - (H(t—l) + ri(t—l)s)] s Ri s

v, €6V, >1 (23)

Constraints (15) and (16) represent the active and reactive
power balance in real-time operation at each node and for each
time period and scenario. Active power balance constraints
(15) enforce that the deviations of wind production are met
with reserve deployment of generating units, and/or wind
power spillage of farms, and/or curtailment of loads.
Constraints (17)—(21) bound the value of unserved load, wind
power spillage, active power reserve deployed, total active
power production and reactive power production of generating
units, respectively. Constraints (22) and (23) enforce ramp-
rate limits. but for real-time operation. Finally, note that the
proposed ac-UC problem (3)—(23) is mixed-integer, nonlinear
and generally intractable. To make it solvable, Benders’
decomposition is applied as described in the next section.

III. BENDER’S SOLUTION

This section proposes a solution strategy based on Benders’
decomposition to solve (3)—(23).

A. Complicating Variables and Convexification

If first-stage variables and are fixed to given values in
problem (3)—(23), this problem decomposes into 1) a scenario-
independent mixed-integer linear problem (representing the
first-stage), and 2) a set of nonlinear continuous problems, one
per scenario (representing the second-stage). Therefore, and
are complicating variables, and Benders’ decomposition can
be potentially applied [20].
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Although the original ac-UC problem (3)—(23) is non-
convex and Benders’ decomposition is not generally
applicable, if the number of wind power scenarios is large
enough, the objective function (1) as a function of the
complicating variables convexifies as shown in [21]. In other
words, the objective function of an expected value stochastic
programming problem convexifies as the number of scenarios
increases. The reason of this is that the objective function
represents the expectation over a number of scenarios. Thus,
as the number of scenarios increases, the diversity of objective
functions increases, while the weight of each single-scenario
decreases. This results in a smoothing effect leading to the
convexification of the expected value objective function. This
convexification allows a successful implementation of
Benders’ decomposition. Benders’ convergence is guaranteed
if the objective function of the original problem projected on
the subspace of the complicating variables has a convex
envelope. The proposed ac-UC problem (1)-(3) is
“sufficiently” convexified by considering a large enough
number of scenarios, and our numerical analysis confirms the
well-functioning of the proposed decomposition algorithm.
Nevertheless, convergence cannot be generally guaranteed for
the considered problem.

Finally, note that the asymptotic convexification yielded by
increasing the number of scenarios is not a heuristic, provided.

B. Decomposition by Scenario and Time Period

Fixing the complicating variables and given values
decomposes the ac-UC problem (3)—(23) by scenario.
However, the ramping constraints (22) and (23), which links
time periods, impede the ac-UC problem to decompose by
time period. In general, an appropriate balance is needed
between model accuracy and computational burden. To this
end, a heuristic technique is used in this paper to decompose
the proposed ac-UC problem by time period. This technique
allows reducing the computational burden, but at the potential
cost of introducing imprecision in the final solution.
According to this heuristic technique, the inter-temporal
ramping constraints (22) and (23) are relaxed and enforced
just locally. That is, at time, ramping limits are enforced with
respect to time, and time periods are processed successively
from the first to the last one. However, note that if needed, a
reduced number of hours (e.g., 3 or 4) may be processed at the
same time, which may be helpful for periods with high
increase/decrease in demand and/or renewable production
levels. Our extensive numerical simulations show that the
results obtained with and without such a heuristic technique
are close enough. Note that the temporal decomposition used
is myopic, and it cannot be applied in power systems with
inter-temporal constraints (e.g. a power system with a
significant number of hydro units or large-scale energy storage
facilities) since these inter-temporal constraints cannot be
locally relaxed. Hydroelectric systems are not prevalent in
most parts of the world [22], but for such systems the
proposed ac-UC problem is still applicable and
computationally efficient by decomposing the problem only
by scenario (and not by time period). Note that the number of

scenarios is generally much larger than the number of hours
within the time horizon considered. The formulation of
Benders’ master problem and subproblems are provided in the
next subsections.

C. Subproblem

The subproblem for scenario and time period is formulated
as (24) below. All variables pertain to Benders’ iteration:

SP v SH SH (v)
B = o) s+ TV s 24)

Subject to (3) and the constraints below,

DA(V) DA, fixed

R =R , Vi €G (25)
(V) fixed

Up =Ug v, c6 (26)

Objective function (24) represents total operation costs in
real time operation. Constraint (25) comprises the second-
stage constraints. Constraints (26) obtained from the solution
of the master problem. The formulation of the master problem
is provided in the next subsection. To prevent infeasibility, a
number of non-negative slack variables are included in the
reactive power and voltage magnitude constraints, along with
penalties in the objective function (24) [20], [23].

D. Master Problem

The master problem corresponding to the original problem
(3)-(23) is formulated as (27). All variables refer to Benders
iteration. The objective function (27) corresponds to (3),
where represents the expected cost in real-time operation:

(V) (v)
Zdown = Z [Ci?u (V)+Ci PIIDA(V)] ta (27)
(ieG)t

Subject to:

()] i DA(v) DA(])
AN D SUCRENEY N
(i€G)t

u(p) , (v) §)) (V).

+#it (Ui[ - uit ) <a ] = L.,v-1 (28)
(v) down
o > a (29)
(2a), (2¢), -(2k) (30)
DA(V) (v=1) (v

) < E (V)
+[msax s Uy < RUy

. Vi €6,V (31

DA(v) (v=1)  (v) S E (v)
it + [msax L L , ¥V, eG, ¥, (32)
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Constraints (28) are Benders’ cuts, which are generated one
per iteration. Note that the feasibility cuts are not required in
the master problem because always-feasible subproblems are
used within the proposed Benders’ algorithm. This “trick” has
proven to be computationally efficient. Constraint (29)
imposes a lower bound on to accelerate convergence.
Constraint (30) enforce all first-stage constraints, except (5).
Instead of (5), constraints (31) and (32) are included in the
master problem to improve convergence. Note that and are
parameters obtained from the solution of the subproblems in
the previous iteration. In fact, in addition to the Benders’ cuts
(28), constraints (31) and (32) further link the master problem
and the subproblems. The value of objective function (27),
that is a lower bound for the optimal value of the objective
function of problem (2)-(23). The solution of the master
problem (27) updates the values of complicating variables.

E. Bender’s Algorithm

1) Input: a small tolerance £ to control convergence, and

initial guesses of the complicating variables, F;IDA(V’ and
)

u, Vv, eG,v,

2) Initialization: Set v=1,z"" =-0

down -
F. Flow Chart

3)
4)
5)

6)

7)

8)

9)

Initial scenario: Consider scenario s=1.
Initial time period: Consider time period t=1.
Sub problem solution: Solve (5) for scenario s and time

period t and calculate z::)

Next time period: Consider the next time period, and
repeat step 5. If all time periods have been considered, go
to the next step.

Next scenario: Consider the next scenario, and repeat
steps 4 to 6. If all scenarios have been considered, go to
the next step.

Convergency check: If [z - z\¥

|< £, the optimal
up down

solution with a level of accuracy has been obtained.
Master problem solution: Solve (27), calculate z;:v)m and

update the values of complicating variables. Then,
continue in step 3.

Non-decomposed ac-UC
problem (1)-(3)

v

Complicating variables

> P andu,
it it
c
=
o
2
=3 A 4
5@
=3 Decomposed ac-UC problem
% é per wind scenario and time
v = :
= period
2
q%.
A 4
Subproblem (5) per wind
Master pro ( .) perwi
scenario and time period
problem

Convergence
check

Optimal results

Fig. 1 Flowchart for Bender’s Algorithm
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TABLE I
NETWORK DATA

Transmission line (n,m) 1-3 39

6-10  10-11 11-14  14-16

S

n,m

S 23 16

2.5 3.0 2.3 2.1

TABLE II
LOAD FACTOR CORRESPONDING TO EACH TIME PERIOD

Time period  tl 2 3 t4 t5

t6 t7 t8 t9 t10 tll t12

Load factor  0.75 0.70  0.65 0.60 0.62 0.63 0.65 0.68 0.70 0.72 0.75 0.78

Time period  t13 t14 t1s t16 t17

ti8 t19 20 21 22 23 24

Load factor  0.80 0.85 0.85 0.90 0.92 0.95 0.98 1.00 0.97 0.93 0.91 0.92

TABLE III
DATA FOR GENERATING UNITS

Lgl)lt Node ﬂ P, g a R,U . RiD R;r ) R; Ci [F;iu] ﬂ.iSU [$] uiml piini r.i|n|
1,2 1 0.100 0.200 0.00 0.10 0.000 0.100 1109 300 1 0.20 0
34 1 0.152 0.760 -0.25 0.30 0.110 0.500 1246 400 1 0.76 0
5,6 2 0.100 0.200 0.500 0.10 0.000 0.100 1109 300 1 0.20 0
7,8 2 0.152 0.760 -0.25 0.30 0.100 0.500 1246 400 1 0.76 0
9 7 0.800 3.500 0.00 1.50 1.000 2.500 1720 100 0 0.00 0

10,11 7 0.150 1.000 0.00 0.60 0.550 0.850 1660 275 1 0.55 045

12-14 13 0.620 1.970 0.00 0.80 0.450 1.150 1408 300 1 1.97 0

15-19 15 0.024 0.120 -0.50 0.06 0.096 0.096 2141 400 0 0.00 0
20 15 0.500 1.550 -0.50 080 0.450 1.000 1592 200 1 1.10 045
21 16 0.500 1.550 -0.50 0.80 0.450 1.000 1592 200 1 1.10 045
22 18 1.000 4.000 -0.50 2.00 1.500 2.800 1917 250 0 0.00 0
23 21 1.000 4.000 -0.50 2.00 1.500 2.800 1917 250 0 0.00 0

24-29 22 0.000 0.500 -0.10 0.16 0.150 0.500 0 100 1 0.50 0

30-31 23 0.500 1.550 -0.50 0.80 0.450 1.000 1592 200 1 1.10 045
32 23 0.800 3.500 -0.25 1.50 1.000 2.500 1720 100 0 0.00 0

TABLE IV

PROBABILITY OF EACH SCENARIO

s P s Py s Py s P

s P s P s Py s P

sl 0.01 s6 0.03 sl 0.05 sl6  0.01
s2  0.01 s7 0.03 s12 0.05 s17  0.01
s3 0.01 s8 0.03 s13 0.01 s18 0.02
s4  0.02 s9 0.04 s14  0.01 s19  0.02
s5  0.02 s10 0.04 s15  0.03 s20  0.03

s21 0.03 s26  0.01 s31 0.02 s36 0.03
s22 0.04 s27  0.01 s32 0.02 s37  0.03
s23 0.04 s28  0.01 s33 0.02 s38  0.04
s24  0.05 s29  0.01 s34 0.02 s39  0.04
s25 0.05 s30  0.01 s35 0.02 s40  0.04

IV. SIMULATION RESULTS

Fig. 2 represents the simulation output for power
consumption with respect to day. The power consumption
varies with respect to demand. The power demand is
calculated during scheduling time for real time operation. The
power consumption varies from 100 to 900MW.

Fig. 3 shows the graph representing the cost for the power
consumed per day. The cost of power for a particular day
depends upon the unit of power consumption per day. Thus,
this system helps in committing the required generators at low
cost.

V. CONCLUSION

The increasing share of renewable energy, namely wind
power generation, brings new challenges and concerns to
power systems operators. They have to guarantee the power
demand and generation balance. For systems with high

presence of wind power generation, the maintenance of this
balance can be problematic. Periods with high levels of wind
power generation combined with low demand create over-
generation that causes difficulties to the system operation. As
consequence, wind curtailments are expected, representing a
waste of natural resources. Studies refer that good wind
forecasting has an important influence on the reduction of the
Unit Commitment costs. Another solution suggested is the
aggregation of wind plants over wider geographical areas
providing a mechanism capable of reducing wind plant
variability. Recent studies indicate that taking into account the
stochastic nature of the wind in the Unit Commitment
procedure, more robust schedules could be produced. The
ramping capacity of the power systems is pointed as being a
crucial factor on the accommodation of wind power
generation. The impact that the wind power forecasting has on
the UC problem was evaluated by introducing wind power
output scenarios. Performances of the deterministic and
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stochastic solutions are compared based on the actual evaluation that considers all possible wind power scenarios.
measured values of wind power generation and based on a risk

Fig. 2 Simulation Waveform for Power Consumption

Fig. 3 Simulation Waveform for cost versus day
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