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Abstract—The construction of Intensity-Duration-Frequency 

(IDF) curves is one of the most common and useful tools in order to 
design hydraulic structures and to provide a mathematical 
relationship between rainfall characteristics. IDF curves, especially 
those in Peninsular Malaysia, are often built using moving windows 
of rainfalls. However, these windows do not represent the actual 
rainfall events since the duration of rainfalls is usually prefixed. 
Hence, instead of using moving windows, this study aims to find 
regionalized distributions for IDF curves of extreme rainfalls based 
on storm events. Homogeneity test is performed on annual maximum 
of storm intensities to identify homogeneous regions of storms in 
Peninsular Malaysia. The L-moment method is then used to 
regionalized Generalized Extreme Value (GEV) distribution of these 
annual maximums and subsequently. IDF curves are constructed 
using the regional distributions. The differences between the IDF 
curves obtained and IDF curves found using at-site GEV distributions 
are observed through the computation of the coefficient of variation 
of root mean square error, mean percentage difference and the 
coefficient of determination. The small differences implied that the 
construction of IDF curves could be simplified by finding a general 
probability distribution of each region. This will also help in 
constructing IDF curves for sites with no rainfall station. 
 

Keywords—IDF curves, L-moments, regionalization, storm 
events.  

I. INTRODUCTION 
XTREME rainfall events such as flood are usually caused 
by excessive rainfalls that results in a large magnitude of 

water. The large amount of water exceeds the maximum 
capacity of irrigation and drainage system at the site which 
then causes extreme events. These extreme events usually 
come with a lot of disaster such as the loss of life and the 
damage to infrastructure, crops as well as properties. Hence, 
extreme rainfall analysis is important in order for researchers 
and experts from various field could model and understand 
rainfall characteristics and consequently prepare and produce 
counter measures for these events in the future.  

There are a lot of research regarding extreme rainfall 
analysis using either annual maximum series (AMS) [1]-[3] or 
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partial duration series (PDS) [4]-[6]. Extreme rainfall analysis 
is a frequent study including analyses performed using storm 
event analysis (SEA). SEA is a method of extracting 
information from rainfall data whereby rainfalls are analyzed 
as storm events. Storm events are defined based on the inter-
event storm definition (IETD). IETD is the minimum duration 
between two storm events such that the serial correlation 
between two events are minimized [7]. In this study, the value 
chosen for IETD is six hours since the difference between the 
mean annual total storms with IETD value of six hours and the 
mean annual total storms with IETD value of seven hours are 
not significant. A storm event is a rainfall event that does not 
contain any dry period of more than or equal to the value of 
IETD. Hence, storm duration is known as the length of time 
for the rainfall event while storm amount is the accumulated 
rainfalls within a storm event. Meanwhile, storm intensity is 
the ratio of storm amount against storm duration [8]. 

IDF curves model the relationship between intensity, 
duration and return period of storm intensity (time intervals 
between two storm events with the same magnitude of storm 
intensity). IDF curves are also a graphical representation that 
summarizes the important statistical properties of storm events 
[9]. The IDF curves have been used and updated regularly by 
many countries such as Taiwan [10], Denmark [11] and 
Canada [12]. Regionalization of IDF curves is important in 
order to minimize computational time and effort as well as to 
obtain the IDF curves for areas with no rainfall stations. Yu 
and Chen have tried to get the regional IDF through the use of 
regression analysis [13] while Willems searched for the 
scaling formula for the regional IDF [14]. In this study, the 
regionalization of IDF curves is obtained by searching for 
regional probability distributions for homogeneous regions 
through the method of L-moments. 

II. HOMOGENEOUS REGIONS 
The first step in obtaining regional probability distributions 

for annual maximum storm intensities and regionalized IDF 
curves is to perform the regional homogeneity test. The 
regional homogeneity test is performed to determine whether a 
region or an area consisting of a few rainfall stations may be 
considered as a homogeneous region. The test is done using 
the method of L-moments. The L-moment method is an 
alternative method for describing the characteristics of 
probability distribution a series of data set. L-moments are 
functions which are constructed using the expected values of 
linear combinations of order statistics. For an ordered sample 
X1:n ≤ X2:n ≤ … ≤ Xn:n with size n, Xj:n denotes the jth smallest 
observation for the sample. Hence, the hth order L-moment, λh, 
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can be written as [15] 
 

λh = h-1 -1
k h-1

k
h-1
k=0 E Xh-k:h ,  h=1, 2, …     (1) 

 
with the expectation of an order statistic is [16] 
 

E Xj:h = h!
j-1 ! h-j !

x FX
j-1 1-FX

h-j
dFX.       (2) 

 
In general practice, L-moments are estimated using a finite 

sample whose distribution is unknown. Thus, for an ordered 
sample x1:n ≤ x2:n ≤ … ≤ xn:n of size n, the hth order sample L-
moment, lh, is written as 
 

lh= h-1 n
h

-1
-1

k h-1
k

i-1
h-k-1

n-i
k

h-1
k=0

n
i=1 xi:n, 

 
h = 1, 2, …, n           (3) 

 
The first order L-moment is known as the L-location while 

second order L-moment is the L-scale. L-CV, denoted by τ, is 
the ratio of L-scale against L-location. Similarly, the sample 
L-CV, t, is the ratio of sample L-scale against sample L-
location; i.e. 
 

 τ = λ2
λ1

 and t = l2
l1.         (4) 

 
L-moment ratios are dimensionless version of L-moments 

where higher-order L-moments are divided by L-scale. Two 
most common L-moment ratios are L-skewness, τ3, and L-
kurtosis, τ4, with the sample L-skewness and L-kurtosis both 
denoted by t3 and t4 respectively. L-moment ratios and sample 
L-moment ratios are obtained as: 
 

 h= λh
λ2

 and t  = lh
l ,  h = 3, 4     (5) 

 
 The regional homogeneity test is performed by comparing 
the variation in the values of sample L-moment ratios between 
rainfall stations and the value expected for a homogeneous 
region. This is because the L-moment ratio for all rainfall 
station in a homogeneous region should be the same. If all the 
stations in a region form a homogeneous region, then the value 
of the L-moment ratio for that particular region is close to the 
average value of the sample L-moment ratios for all rainfall 
stations that make up the region [15]. 
 A simple way to measure the variation of sample L-moment 
ratios is by calculating the standard deviation of L-CV (4) for 
each rainfall station in the region. These standard deviations 
are weighted so that they are proportional to the sample size of 
rainfall data at each rainfall station. In order to obtain the 
value for the expected dispersion for a homogeneous region, 
repetitive simulations are done with the same sample size as 
the length of rainfall data at each station in the region. Then, 
the average and standard deviation for the dispersion measure 
are calculated based on all the simulations [17]. 
 A probability distribution is chosen to generate these 

simulations and in order to avoid being committed to a certain 
two-parameter or three-parameter probability distribution, the 
four-parameter Kappa distribution is used [18]. The 
cumulative distribution function, F(x), and the quantile 
distribution function, Q(u), for the Kappa distribution can be 
written as: 
 

x = 1-η 1- κ
α

x-ξ
1 κ

1 η

        (6) 

 
and                       

u = ξ+
α
κ

1-
1-uη

η

κ

 

 
with ξ and α are the location and scale parameters respectively 
while κ and η are shape parameters for the Kappa distribution. 
The Kappa distribution is a general distribution to many other 
distributions. Special cases of Kappa distribution include the 
generalized logistic distribution (GLO) when η = -1, the 
generalized extreme distribution (GEV) when η = 0, and the 
generalized Pareto distribution (GPA) when η = 1. Hence, 
Kappa distribution is able to represent a lot of probability 
distributions which are commonly used in extreme event 
analysis. In general, Kappa distribution is a suitable 
distribution to be used as a general distribution in simulations. 
 Let a region contains NS rainfall stations with each station j 
have a sample size of nj. Sample L-CV, L-skewness and L-
kurtosis for each station j are denoted as t(j), t3

(j) and t4
(j) 

respectively. Meanwhile tR, t3
R and t4

R refer respectively to the 
average values of L-CV, L-skewness and L-kurtosis for the 
region. These average values are weighted proportionally with 
the sample size of each rainfall station which can be written as 
[1]: 
 

tR njt jNS
j=1 nj

NS
j=1  and thR njth

(j)NS
j=1 nj

NS
j=1 , h = 3, 4 (7) 

 
Based on the value of tR, the weighted standard deviation of 

L-CV, denoted by V, can be obtained as [1]: 
 

nj t(j)-tR
2NS

j=1 nj
NS
j=1

1/2
        (8) 

 
The average L-location for the region, l1

R, is fixed to one. 
Then, the values of l1

R, tR, t3
R and t4

R for the region are fitted to 
the L-location, L-CV and L-moment ratios of Kappa 
distribution in order to estimate the suitable parameters of 
Kappa distribution that is needed to simulate the region. 
Functions for L-location, L-CV and L-moment ratios of Kappa 
distribution are written as [15]: 

 
α m1-m2 ξ+α 1-m1  

3 -m1+3m2-2m3 m1-m2  
-m1+6m2-10m3+5m4 m1-m2  

(9) 
with 
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mh=

mΓ 1+κ Γ m η
η1+κΓ 1+κ+m η

,          η > 0  and κ > -1 

mΓ 1+κ Γ -κ-m η

-η
1+κ

Γ 1-m η
,    η < 0 and -1 < κ < -1/η

, 

 
and Γ(.) is the gamma function. 

The estimated parameters obtained for the Kappa 
distribution are then used to generate a large number of 
simulation for the region, Nsim. Each simulated region is 
homogeneous with no cross correlation or serial correlation 
and contains the same length of recorded data as the original 
region [15]. Then, the value of V is calculated for each of the 
simulated regions. Hence, there will be Nsim values of V and 
thus the average of V, μV, and the standard deviation of V, σV, 
can be computed. Subsequently, the regional homogeneous 
test statistic is obtained as [19]: 
 

 HR V μV
σV

            (10) 
 
If HR < 1, then the region is considered homogeneous; if 1 ≤ 
HR ≤ 2, then the region has a probability of not being 
homogeneous while if HR ≥ 2, then the region is deemed 
heterogeneous. 

Based on the geographical locations and storm events 
characteristics, four regions are identified for Peninsular 
Malaysia as shown in Fig. 1 [20]. Fig. 1 also shows the 
locations of all 45 rainfall stations under consideration. The 
regional homogeneous test is performed on the annual 
maximum storm intensities of certain storm durations for the 
four said regions; north, west, easy and south of Peninsular 
Malaysia. The annual maximum storm intensities series used 
in this study are the annual maximums of storm intensities 
with storm durations of 1, 2, 3, 4, 6, 8, 9, 12, 16 and 24 hours. 
The regional homogeneous test is done on all ten series to 
make sure that each series has a homogeneous relationship 
between rainfall stations in each of their respective region. 
The regional homogeneous test statistics for all ten series of 
annual maximum storm intensities of all four regions are given 
in Table I. 

 
TABLE I 

TEST STATISTIC HR OF TEN SERIES OF ANNUAL MAXIMUM STORM 
INTENSITIES FOR FOUR REGIONS IN PENINSULAR MALAYSIA 

Storm duration, d (hours) Test statistic HR 
North West South East 

1 0.43 -0.99 0.95 -0.30 
2 0.74 0.51 0.64 -1.28 
3 0.76 0.47 1.63 -1.43 
4 -1.12 0.37 0.67 -1.23 
6 -0.96 -0.35 0.96 -0.01 
8 -0.01 0.55 0.01 0.37 
9 0.61 0.13 0.17 -1.23 

12 0.76 0.83 -0.73 0.61 
16 -1.27 0.33 0.69 -1.43 
24 -0.49 0.06 -0.44 -0.24 

 
 

 
Fig. 1 Rainfall stations in Peninsular Malaysia 

 
Table I shows that almost all of the annual maximum storm 

intensities series for all four regions have values less than one 
for the test statistic HR. This means that the annual maximums 
for the four regions are homogeneous for various storm 
durations. Only the series of annual maximum storm 
intensities with a 3-hour storm duration in the southern region 
has a value of HR equals to 1.63. However, it is still less than 
two and thus not significantly heterogeneous. 

III. REGIONAL PROBABILITY DISTRIBUTION 
Regional L-moment algorithm is used to determine a 

regional probability distribution for a homogeneous region. 
This regional probability distribution is able to represent the 
observed rainfall data at each rainfall station in the region 
when scaled with the scaling factor of the station. The quantile 
function for a station j which has a sample size of nj from a 
region with NS rainfall stations is denoted as Qj. An observed 
rainfall data, xj, for the station at a certain quantile u can be 
approximated using the quantile function as xj = Qj(u) for 0 ≤ 
u ≤ 1. Hence the observed rainfall series for station j can be 
written as xj,k = Qj(uk) for k = 1, …, nj and j = 1, …, NS. If the 
region is homogeneous, then the quantile function for rainfall 
station j in the region can be written as [21]: 

 
Qj(u) = μjq(u),   j = 1, …, NS           (11) 

 
with μj is the scaling factor for station j and q(u) is the 
regional quantile function. Subsequently, the regional data 
which have been scaled, xR, at a certain quantile u is computed 
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as xR = q(u) with xk
R = xj,k μj for k = 1, …, nj and j = 1, …, NS. 

The values for the sample L-CV and sample L-moment ratios 
for station j using xj is the same as the values found using the 
regional data xR. For simplicity purposes, the scaling factor μj, 
which is also known as the flood index, is taken as the mean 
of the rainfall series at rainfall station j (sample L-location), 
i.e. μj = l1

(j). 
The estimated regional quantile function, q, is obtained by 

fitting l1
R, tR, t3

R and t4
R for the region with the mean, L-CV 

and L-moment ratios of the probability distribution considered 
as the regional probability distribution of the region under 
study. In this study, GEV distribution is chosen to represent 
the series of annual maximum storm intensities for certain 
storm durations. This is because the GEV distribution is a 
suitable distribution for extreme storm events in Peninsular 
Malaysia [22]. The definition for L-moments and L-moment 
ratios of GEV distribution is given as [15]: 

 
λ1 ξ α

κ
1 1 κ     

λ2
α 1 2-κ 1 + κ

κ
 

τ3 2
1 3-κ

1 2-κ 3 

τ
5 1 -κ 10 1 -κ 6 1 2-κ

1 2-κ  

 
where ξ and α are the location and scale parameters 
respectively while κ is the shape parameter with κ > -1. The 
estimated parameters of GEV distributions for annual 
maximum storm intensities with storm duration 1, 2, 3, 4, 6, 8, 
9, 12, 16 and 24 hours for four regions in Peninsular Malaysia 
are given in Table II. 

IV. REGIONALIZATION OF IDF CURVES 
In order to find the IDF function for annual maximum storm 

intensities to build IDF curves for rainfall stations, sets of 
values (i, d, T) which correspond to values of storm intensities, 
i, at various values of storm duration d and return period T. 
The value of i for a certain d and T is determined using: 

 
Qd 1 1

T
          (12) 

 
where Qd is the quantile function for the series of annual 
maximum storm intensities with storm duration d. By 
obtaining the quantile functions, q, for the series of annual 
maximum storm intensities with various values of storm 
durations and return periods for a homogeneous region; as 
well as determining the scaling factor, μj, for a rainfall station j 
in that region, various sets of (i, d, T) can be found for the 
station by using (11) and (12). Hence, it is not necessary to 
search for the at-site probability distributions for the series at 
each rainfall station in the region. 
 
 
 
 

 

TABLE II 
ESTIMATED PARAMETERS OF GEV DISTRIBUTIONS AS THE REGIONAL 

PROBABILITY DISTRIBUTIONS OF ANNUAL MAXIMUM STORM INTENSITIES 
FOR FOUR REGIONS IN PENINSULAR MALAYSIA 

d 
(hours) 

North West 
ξ α κ ξ α κ 

1 0.75 0.43 0 0.76 0.42 0 
2 0.81 0.34 0 0.81 0.32 -0.01 
3 0.82 0.31 0 0.82 0.29 -0.04 
4 0.82 0.30 -0.01 0.83 0.30 0 
6 0.83 0.30 0 0.83 0.29 0 
8 0.82 0.31 0 0.82 0.31 0 
9 0.81 0.33 0 0.81 0.32 0 

12 0.78 0.39 0 0.77 0.39 0 
16 0.71 0.49 0 0.68 0.50 -0.06 
24 0.67 0.49 -0.09 0.62 0.51 -0.14 
d 

(hours) 
South East 

ξ α κ ξ α κ 
1 0.70 0.48 -0.06 0.71 0.44 -0.08 
2 0.74 0.38 -0.11 0.77 0.33 -0.12 
3 0.74 0.35 -0.14 0.79 0.31 -0.10 
4 0.79 0.37 0 0.82 0.31 0 
6 0.78 0.37 0 0.83 0.30 0 
8 0.78 0.37 -0.02 0.81 0.33 0 
9 0.77 0.39 0 0.80 0.34 0 

12 0.74 0.46 0 0.76 0.41 0 
16 0.66 0.51 -0.08 0.68 0.46 -0.12 
24 0.61 0.47 -0.20 0.63 0.48 -0.17 

 
The sets of (i, d, T) for each station are then fitted to the 

IDF equation. In this study, a simple IDF equation, known as 
the Sherman equation, is used. The Sherman equation can be 
written as: 

 
aT

d + b c           (13) 
 
with a, b, c and e are constants. The values for these constants 
are estimated using the least squares method which is 
performed on (13) with values of (i, d, T) found for each 
station. With the estimated values, the IDF equation can be 
used to build the IDF curves for each rainfall station under 
study. 

IDF curves found based on these regional probability 
distributions are compared to IDF curves obtained by 
searching for at-site probability distributions at each rainfall 
station. The differences between the two sets of IDF curves 
found for each station are examined by using three goodness-
of-fit indices which are coefficient of variation of root mean 
square error, CVRMSE; mean percentage difference, Δ; and the 
coefficient of determination, R2. If we denote the IDF curves 
found from the at-site and regional probability distributions as 
the series of X and Z respectively, these three indices are 
calculated as: 
 

CVRMSE

1
NdNT

xd,T zd,T
NT
T=1

Nd
d=1

1
NdNT

xd,T
NT
T

Nd
d

100%,      (14) 

 

Δ 1
NdNT

xd,T zd,T

xd,T

NT
T=1 100%Nd

d=1         (15) 
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and 

R
zd,T zNT

T=1
Nd
d=1 zd,T d,T

NT
T=1

Nd
d=1

zd,T zNT
T=1

Nd
d=1

100%, 

z 1
NdNT

d,T
NT
T

Nd
d          (16)  

 
with Nd and NT are the number of storm durations and the 
number of return periods considered in the analysis. The 
values of xd,T and zd,T are storm intensities with storm duration 
d and return period T from the series of X and Z respectively. 
Meanwhile, z β1 β2x where β1 and β2 are approximated 
through the regression analysis for Z against X. 

For CVRMSE and Δ, the smaller the values obtained show 
smaller differences between the two sets of IDF curves at each 
rainfall stations. Meanwhile, the larger the value for R2 show 
that the two sets of curves are more similar. The values of the 
three indices for the differences between the IDF curves based 
on the at-site and regional probability distributions at 45 
rainfall stations under study are given in Table III. 
 

TABLE III 
VALUES FOR GOODNESS-OF-FIT INDICES OF THE DIFFERENCE BETWEEN IDF 

CURVES BASED ON REGIONAL AND AT-SITE PROBABILITY DISTRIBUTIONS AT 
45 RAINFALL STATIONS 

Stn. CVRMSE Δ R2 Stn. CVRMSE Δ R2 

Kh1 8.02 2.22 99.97 N3 6.94 7.45 99.73 
Kh2 4.90 1.69 99.98 N4 12.60 6.93 99.20 
Kh3 4.31 2.14 99.93 N5 5.87 3.15 99.94 
Kh4 11.41 7.57 99.76 J1 11.30 4.24 99.86 
PP2 5.21 5.03 99.64 J2 14.86 8.83 99.39 
PP3 2.67 0.89 99.98 J4 16.30 7.15 99.52 
Pk1 13.76 5.11 99.72 J5 27.95 18.63 98.70 
Pk2 4.14 2.78 99.97 J6 11.30 4.87 99.80 
Pk3 4.35 5.29 99.92 M4 25.04 12.54 99.10 
Pk4 9.39 8.08 99.66 Pg1 18.83 7.55 99.49 
Pk5 7.40 8.82 99.87 Pg2 8.43 4.58 99.84 
S1 3.45 1.16 99.99 Pg3 6.69 4.69 99.90 
S2 3.75 2.48 99.98 Pg4 4.56 4.37 99.94 
S3 10.78 4.78 99.68 T1 11.73 6.32 99.79 
S4 15.54 12.03 99.28 T2 7.28 6.15 99.85 
S5 1.00 0.69 100.00 T3 7.94 3.61 99.86 
W1 2.31 1.54 99.99 T5 6.74 3.55 99.89 
W2 8.72 8.12 99.39 T6 5.94 3.28 99.80 
W3 2.29 2.55 99.98 Kn1 8.87 11.27 99.83 
W4 6.78 7.45 99.88 Kn2 3.67 2.51 99.84 
W5 12.02 9.39 99.64 Kn3 7.29 8.56 99.83 
N1 77.91 25.61 94.09 Kn4 3.93 3.52 99.93 
N2 25.06 12.15 99.41     

 
Both the values of CVRMSE and Δ are small for most rainfall 

stations under consideration with an average of 10.6 and 6.3 
percent respectively for all 45 stations. This shows that storm 
intensities obtained from IDF curves found from the regional 
probability distributions are equivalent to the storm intensities 
obtained from IDF curves built by using at-site probability 
distributions. The relationship between the two sets of IDF 
curves are also seen by the value of R2 which has an average 

of 99.6 percent for all the rainfall stations under study. This 
implies that almost all the variations found from IDF curves 
through regionalizing probability distributions can be 
explained and determined from the variations observed from 
IDF curves using at-site probability distributions. 
 The values of Δ for the differences between storm 
intensities of the two sets of IDF curves at each station are 
looked at more closely by looking at the average values of Δ 
for storm intensities with storm duration 1, 3, 6, 9, 12 and 24 
hours as well as for return periods of 2, 5, 10, 25, 50 and 100 
years. These values are shown in Table IV. 

 
TABLE IV 

AVERAGE VALUES OF Δ FOR DIFFERENCES OF STORM INTENSITIES FOUND 
FROM THE TWO SETS OF IDF CURVES AT 45 RAINFALL STATIONS  

d (hours) T (years) 
2 5 10 25 50 100 

1 4.46 4.65 5.95 8.50 10.39 12.25 
3 3.66 2.65 3.44 6.08 8.14 10.17 
6 5.95 3.08 2.93 4.72 6.75 8.70 
9 7.79 4.50 3.46 4.61 6.16 8.10 

12 9.15 5.67 4.20 4.95 6.05 7.73 
24 12.65 8.84 6.94 6.16 6.89 7.86 

 
Based on Table IV, the average values of Δ for storm 

intensities obtained from both sets of IDF curves have very 
small difference since most of Δ are less than ten percent. 
Hence, this shows that the regionalization of IDF curves by 
using regional probability distributions provide similar IDF 
curves to those obtained by finding individual probability 
distributions at each rainfall station. The comparison between 
the two sets of curves from selected rainfall stations are shown 
in Fig. 2. 

V. CONCLUSION 
The method of L-moments is used in this study to determine 

homogeneous regions and to find the regional probability 
distributions for all the homogeneous regions obtained. 
Regionalization of IDF curves are then performed by building 
IDF curves using these regional probability distributions 
instead of using at-site probability distributions for rainfall 
stations in the regions. The IDF curves obtained from both the 
regional and at-site probability distributions are compared 
through three goodness-of-fit indices. These indices show that 
the regionalization of IDF curves for storm events in 
Peninsular Malaysia results in similar IDF curves to those 
obtained by fitting probability distributions at each rainfall 
station. This helps to simplify the process of building IDF 
curves for rainfall stations in the region because fitting of 
probability distributions can be reduced to only once per 
region. In fact, the regional probability distribution can be 
used to find IDF curves for areas with no rainfall stations. 
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Fig. 2 IDF curves for four rainfall stations in Peninsular Malaysia (Note: The values at the end of each curve is the return period T for the 

curve) 
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