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Conjugate Free Convection in a Square Cavity
Filled with Nanofluid and Heated from Below by

Spatial Wall Temperature
Ishak Hashim, Ammar Alsabery

Abstract—The problem of conjugate free convection in a square
cavity filled with nanofluid and heated from below by spatial wall
temperature is studied numerically using the finite difference method.
Water-based nanofluid with copper nanoparticles are chosen for the
investigation. Governing equations are solved over a wide range
of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number
((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The
results presented for values of the governing parameters in terms of
streamlines, isotherms and average Nusselt number. It is found that
the flow behavior and the heat distribution are clearly enhanced with
the increment of the non-uniform heating.

Keywords—Conjugate free convection, nanofluid, spatial
temperature.

I. INTRODUCTION

FREE convective heat transfer is a significant phenomenon

in engineering systems due to its wide applications

in operations of solar collectors, heat exchangers, storage

tanks, double pane windows, etc. Ostrach [1] introduced

a number of these applications. Many researchers have

considered nanofluids as working mediums that enhance

thermal conductivity with the presence of nanoparticles, thus

making nanofluids appear as a decent candidate for heat

removal devices in workable, fluid-based, thermal applications.

Shu and Wee [2] numerically studied the free convection in

a square cavity by simple-generalized differential quadrature

method. Turan et al. [3] numerically investigated the laminar

free convection of Bingham fluids in a square cavity with

differentially heated side walls. Recently, Alsabery et al. [4]

considered the free convection heat transfer in a square cavity

partially filled with porous media numerically by using finite

element method. A very first comprehensive work on free

convection in partially occupying nanofluids in cavities was

done by Khanafer et al. [5] The work of Jou and Tzeng

[6] considered the free convective heat transfer in nanofluids

occupying a rectangular cavity. Nasrin and Parvin [7] used

the finite element method to study the buoyancy-driven flow

and heat transfer in a trapezoidal cavity filled with water-Cu

nanofluid.

Conjugate free convection heat transfer in cavities has

received much attention because of its importance to many

engineering systems, such as solar energy collectors, material
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processing, heat preservation of thermal transport circuits,

building energy components, and the cooling of electrical

units. House et al. [8] investigated the effect of a centred

heat-conducting body on the free convection heat transfer in

a square cavity. Zhao et al. [9] studied the effect of a centred

heat-conducting body on the conjugate free convection heat

transfer in a square cavity.
The problem of free convection in closed cavities with

boundary walls, including spatial wall temperatures, has been

considered in a few studies. Saeid and Yaacob [10] considered

numerically the free convection in a square cavity filled with

pure fluid in addition to a non-uniform hot-wall temperature

and a uniform cold-wall temperature. However, conjugate free

convection in a square cavity filled with nanofluid and heated

from below by spatial wall temperature has not yet been

undertaken. The aim of this study is to investigate the effect of

spatial wall temperature variation on conjugate free convection

in a square cavity filled with nanofluid.

II. MATHEMATICAL FORMULATION

Consider two-dimensional steady free convection in a

square cavity with length L, as illustrated in Fig. 1. The bottom

horizontal wall of the cavity is heated to spatial temperature

Th and the top horizontal wall is maintained at a constant cold

temperature Tc, while the vertical walls are kept adiabatic.

The boundaries of the cavity are assumed to be impermeable,

the fluid within the cavity is a waterbased nanofluids

having Cu nanoparticles. The Boussinesq approximation is

applicable, the nanofluid physical properties are constant

except for the density. By considering these assumptions, the

continuity, momentum and energy equations for the laminar

free convection can be written as:
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Fig. 1 Physical model of convection in a square cavity together the
coordinate
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and the energy equation for the impermeable wall is:

∂2Tw

∂x2
+

∂2Tw

∂y2
= 0. (5)

where x and y are the Cartesian coordinates measured in

the horizontal and vertical directions respectively, g is the

acceleration due to gravity. We assumed that the temperature

of the hot vertical wall has a sinusoidal variation almost a

minimum value of Th in the form

Th(y) = T̄h + ε
(
T̄h − Tc

) [
1− cos

(
2πλx

L

)]
(6)

αnf is the effective thermal diffusivity of the nanofluids, ρnf is

the effective density of the nanofluids and μnf is the effective

dynamic viscosity of the nanofluids, which are defined as

αnf =
knf

(ρCp)nf
, ρnf = (1− φ)ρbf + φρsp,

μnf

μbf
=

1

(1− φ)2.5
(7)

where, φ is the solid volume fraction of nanoparticles, the heat

capacitance of the nanofluids given is

(ρCp)nf = (1− φ)(ρCp)bf + φ(ρCp)sp (8)

The thermal expansion coefficient of the nanofluids can be

determined by

βnf = (1− φ)(β)bf + φβsp (9)

(ρβ)nf = (1− φ)(ρβ)bf + φ(ρβ)sp (10)

The thermal conductivity based on Maxwell-Garnett’s (MG)

model is given below:

knf
kbf

=
ksp + 2kbf − 2φ(kbf − ksp)

ksp + 2kbf + φ(kbf − ksp)
(11)

In terms of the stream function ψ and the vorticity ω, which

are defined in the usual way as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
(12)

ω =
∂v

∂x
− uψ

∂y
(13)

Now, we introduce the following non-dimensional variables:

X =
x

L
, Y =

y

L
, Ω =

ωL2

αbf

Ψ =
ψ

αbf
, θ =

T − Tc

Th − Tc
(14)

This then yields the dimensionless governing equations:
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+
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where Rabf = gρbfβbf (T̄h−Tc)L
3/(μbfαbf ) is the Rayleigh

number, and Pr = νbf/αbf is the Prandtl number for the base

fluid.

The dimensionless boundary conditions of (15)–(18) are:

θw(X, 0) = 0.5 + ε [1− cos(2πλX)] ;θnf (X, 1) = −0.5

∂θw(0, Y )/∂X = 0; ∂θnf (0, Y )/∂X = 0

∂θw(1, Y )/∂X = 0; ∂θnf (1, Y )/∂X = 0

θnf (X,D) = θnf (X,D);

∂θnf (X,D)/∂Y = Kr∂θw(X,D)/∂Y (19)

where Kr = Kw/Kbf is the thermal conductivity ratio. The

local Nusselt numbers along the hot and the cold horizontal

walls can be defined as:
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Finally, the average Nusselt numbers can be defined as:

Nuw =

∫ 1

0

[
−
(
kw
kbf

)
∂θw
∂Y

]
dY (22)

Nunf =

∫ 1

0

[
−
(
knf
kbf

)
∂θnf
∂Y

]
dY (23)

III. RESULTS AND DISCUSSION

In this section, we present numerical results for the

streamlines and isotherms with various values of nanoparticle

volume fraction (0 ≤ φ ≤ 0.2), wave number (0 ≤
λ ≤ 4), thermal conductivity ratio (0.44 ≤ Kr ≤ 6),
and other parameters fix at Rayleigh number (Ra = 105),

nondimensional temperature (ε = 0.4), ratio of wall thickness

(D = 0.3) and Prandtl number Pr = 6.2. The values of

the average Nusselt number have been calculated for various

values of λ and φ.

Fig. 2 shows the effects of the wave number on the

streamlines (left) and isotherms (right) of waterCu at Ra =
105, ε = 0.4, Kr = 1 and D = 0.3. Fig. 2 (a) presents the

effect of low wave number (λ = 0.2). on the streamlines and

the isotherm patterns. The pure fluid flow structure appears

with singular streamlines cell in the clockwise direction,

while two streamlines cells occur for the nanofluid within

the cavity. When the streamlines circulated as vortices in the

clockwise direction (negative sign of Ψ), the strength of the

flow circulation is denoted as Ψmin. By the nanofluid addition

(φ = 0.05), the thermal conductivity increases which leads to

increase the strength of the flow circulation (see Ψmin values).

The convection heat transfer enhanced by the non-uniform

heating; as such the isotherm patterns of the pure fluid tend

to take almost a horizontal lines, while the nanofluid isotherm

patterns appear with almost a curved lines. Increasing wave

number up to 0.9 leads to increase the strength of the flow

circulation. Significant change appears on the flow motion

especially for the pure fluid, the pure fluid streamline cell tends

to break into two cells, one in the clockwise direction close

to the right wall and one in anti-clockwise direction near to

the left wall. Clearly, the isotherm patterns are influenced by

the increase of λ value, next to the horizontal, the isotherm

patterns arise with irregular lines. At a higher λ value (λ = 3),

the streamlines are significantly affected, the streamlines for

the pure fluid are almost similar to that for the nanofluid. The

strength of the flow circulation decreases due to the strong

effect of the non-uniform heating. The isotherm patterns near

to the bottom wall are transferred from irregular-shape to the

spots-shape due to the high non-uniform heating, as displayed

in Fig. 2 (c).
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Fig. 2 Streamlines (left) and isotherms (right) evolution by wave number for
Ra = 105, ε = 0.4, Kr = 1 and D = 0.3

Fig. 3 (a) illustrates the effect of nanoparticle volume

fractions on the average Nusselt number with wave number

for waterCu at Ra = 105, ε = 0.4, Kr = 1 and D = 0.3. We

observe that the convection heat transfer is enhanced by the

raise of wave number, the significant increasing appears for

lower λ values (λ ≥ 2). Increasing λ values leads to decrease

and then increase the average Nusselt number which depicts

the different enhancement of the effects of the spatial heating

on the convection heat transfer from the uniform heating.

Maximum values of average Nusselt number appear together

with higher value of nanoparticle volume fractions due to

the higher thermal conductivity of the nanoparticles. Fig. 3

(b) presents the effect of thermal conductivity ratio on the

average Nusselt numbers with nanoparticle volume fractions

at Ra = 105, ε = 0.4, Kr = 1 and D = 0.3. Due to the

increase in convection by the addition of nanoparticles, the
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Fig. 3 (a) Variation of average Nusselt numbers interfaces with wave
number for different nanoparticle volume fraction; (b) Variation of average
Nusselt numbers interfaces with nanoparticle volume fraction for different

thermal conductivity ratio

average Nusselt number increases. A significant enhancement

in the convection heat transfer is obtained by lower thermal

conductivity ratio Kr = 0.44, which leads to the maximum

value of the average Nusselt number.

IV. CONCLUSION

The present numerical study considers the effect of spatial

wall temperature variation on conjugate free convection in a

square cavity filled with nanofluid and heated from below. The

Finite Difference Method (FDM) has been used numerically

to solve the dimensionless governing equations (15)-(18)

subject to the boundary conditions (19). The streamlines are

affected by applying the non-uniform heating, the pure fluid

flow structure appears with singular streamlines cell in the

clockwise direction, while two streamlines cells occur for

the nanofluid within the cavity. A significant enhancement

in the convection heat transfer is obtained by lower thermal

conductivity ratio, which leads to the maximum value of the

average Nusselt number.
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