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Abstract—Real Time Video Tracking is a challenging task for
computing professionals. The performance of video tracking
techniques is greatly affected by background detection and
elimination process. Local regions of the image frame contain vital
information of background and foreground. However, pixel-level
processing of local regions consumes a good amount of
computational time and memory space by traditional approaches. In
our approach we have explored the concurrent computational ability
of General Purpose Graphic Processing Units (GPGPU) to address
this problem. The Gaussian Mixture Model (GMM) with adaptive
weighted kernels is used for detecting the background. The weights
of the kernel are influenced by local regions and are updated by inter-
frame variations of these corresponding regions. The proposed
system has been tested with GPU devices such as GeForce GTX 280,
GeForce GTX 280 and Quadro K2000. The results are encouraging
with maximum speed up 10X compared to sequential approach.

Keywords—Connected components, Embrace threads, Local
weighted kernel, Structuring element.

[.INTRODUCTION

ISION applications such as, Automated Video

Surveillance (VS), autonomous vehicle control, gesture
interaction based on dynamic facial features pose a challenge
to researchers due to their computational intensity and
response times. High speed real-time image processing on
video frames is difficult even with the most powerful modern
CPUs. As the computational capabilities at software level
using traditional serialization approaches have reached their
limitations, the new trend is to explore parallelism to meet the
growing demands for these applications. Distributed
computing with multiple machines was suggested by [1]-[3].
However, the cost of resources and complexity of the required
implementation make the researches look to alternatives in
multi-core computing [4] and GPGPU computing [5].

Current chip technology favors increasing performance
using multiple-core processors on a single chip, which has
refocused attention on parallel algorithms balancing
concurrency and communication. Recently, multi-core and
multi-threaded architectures, along with general purpose
Graphics Processing Units (GPU's), have pushed the limits of
real-time multimedia and graphics applications that are based
on the stream model of computation

Automated Video Surveillance (VS) involves many
computer vision algorithms like object detection and tracking
[6]-[9], human activity recognition [10] and tracking
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performance evaluation techniques [11]. There has been
extensive research in past two decades in this area which can
be reviewed in [12], [13] and computer vision systems have
been developed that are used in commercial systems. Rule-
based framework [14] has been proposed for behavior and
activity detection in traffic videos obtained from stationary
video cameras. Moving targets are segmented from the images
and tracked in real time. Some successful applications for
instance are complete solution for vehicle and traffic
surveillance [15], tracking and counting people [16], detecting
left luggage [17], face or other biometric recognition etc. VS
algorithms represent a class of problems that are both
computationally intensive and bandwidth intensive [18].

Research efforts both from academia and industry have
been made to exploit Cell multi-core architecture for
applications related to video processing, retrieval and
compression [19]. There are quite a number of papers related
to parallelizing video encoding algorithms for different
standards like JPEG 2000 [20] or H.264 [21]. In [22], details
of a Cell BE implementation for different processing stages
for compression algorithms are described. The novelty is that
such hardware is now available off the shelf: clusters featuring
GPGPU FPGA or even Cell processors are affordable to most
of the user [23]. Similarly, GPU based motion estimation
methods have been proposed using CUDA [24]. However,
there has only been limited published work on parallelizing
algorithms and operators for video surveillance algorithms
optimized for the Cell BE or GPUs.

Stream  processors  perform  extremely well on
media/graphics applications with large data sets requiring the
execution of similar operation on their data elements such as
vector processing applications by incorporating SIMD
execution units. The IBM Cell BE processor is a good
example of the stream model of computation.

II.GENERAL PURPOSE COMPUTING USING GPU’S

Modern programmable graphics hardware contains
powerful co-processors called GPU (Graphics Processing
Unit) and is suitable for video analysis in real- time vision
systems. While significant acceleration over standard CPU
implementations is obtained by exploiting parallelism
provided by modern programmable graphics hardware, the
CPU is freed up to run other computations parallel. It works
on both ATI (Array Technology Incorporated) and NVIDIA
graphic cards. Recently, graphic processing units have evolved
into an extremely powerful computational resource. For
example, The NVIDIA GeForce GTX 280 is built on a 65nm
process, with 240 processing cores running at 602 MHz, and
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1GB of GDDR3 memory at 1.1GHz running through a 512-bit
memory bus. Its processing power is theoretically
933GFLOPS, billions of floating-point operations per second,
in other words. As a comparison, the quad-core 3GHz Intel
Xeon CPU operates roughly 96 GFLOPS. The annual
computation growth rate of GPUs is approximately up to 2.3x.
In contrast to this, that of CPUs is 1.4x. At the same time,
GPU is becoming cheaper and cheaper. As a result, there is
strong desire to use GPUs as alternative computational
platforms for acceleration of computational intensive tasks
beyond the domain of graphics applications.

CUDA (Compute Unified Device Architecture) is a parallel
computing architecture developed by NVIDIA for massively

parallel high-performance computing [25]. CUDA supports c-
like programming to perform operations on the core of GPU.
In the CUDA programming framework, GPU acts as co-
processor to the CPU. The GPU has its own DRAM, referred
to as device memory, and support the parallel execution of a
very high number of threads. More precisely, data-parallel
portions of an application are executed on the device as
kernels which run in parallel on many threads. Since the
computation is local to the machine, communication delays
will be minimized. Interaction between hosts and device
interaction is given by the following Fig. 1. The device cores
segregated into Grids and Blocks and thus enabling parallel
computation.

Host

Device

Fig. 1 Segmentation of data intensive program into computational blocks

Control ALU | ALU

ALU | ALU
CPU

(ITRERLL ]

GPU

Fig. 2 Chip design of CPU and GPU

A. GPGPU Computation

CPU's are developed and optimized for sequential serial
processing while GPU’s support parallel processing through
data streaming, as shown in Fig. 2. A serial processor, based
on the Von Neumann architecture executes instructions
sequentially. Each instruction is fetched and executed by the
CPU one at a time. A stream processor on the other hand
executes a function (kernel) on a set of input data (stream)
simultaneously. The input elements are passed into the kernel
and processed independently without dependencies among
other elements. This allows the program to be executed in a
parallel fashion. The following c-program is performing cubes
of 100 element array. The computation is performed in cores.
Kernel call cube array was made by cube_array <<< Grid ,

Block >>> (arr , 100) from main function. Grid contains 10
Blocks and each block contain 10 threads. _global _ void
cube_array (float *a, int N) instructs the compiler to generate
code for cores of the device. Fig. 3 clearly revels the structure
of computation.

1 _global _ void cube_array (float *a, int N) {

2 int idx = blockIdx .x * blockDim .x + threadldx .x;

3if (idx <N) {

4 a[idx] = a[idx] * a[idx ] *a[idx];

5%

6}

7

8 int main (void ) {

9..

10 dim3 Block (10, 10);
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11 dim3 Grid (1) ;

12 // allocate memory for array dynamically in Host

14// initialize arry with random numbers

14 // copy the array from Host memory to device memory

GRID
BLOCK 0

BLOCK 1

[03)

arr{9) *arr (91 *arr (9]

15 cube _array <<< Grid , Block >>> (arr, 100) ;
16 // free device memory..

17 // free host memory
18}

(L8

Fig. 3 Device Execution Unit: 1-GRID, 10 Blocks and 10 Threads/block

[II.PROPOSED VIDEO TRACKING SYSTEM

In general, the portion of the image region of the frame
corresponding to the real target of the object has to provide
highest similarity and therefore unambiguously make itself
different from the other object of the frame. However, the
cluttered background may result in other objects of the frame
generating comparable similarity and hence confuse the
tracking system. The local maxima produced by the
interference of the background objects make design of
tracking algorithms much more complex and increases the
computational requirements.

A. Our Proposed Real Time Video Tracking System

We have gone through the following sequential image
processing algorithms and developed its parallel version with
different approaches in core i5 & i7 processors and found
good results with variable numbers of threads passed as input
parameters. We focused on the most promising and well-
supported techniques with an emphasis on image processing
application. Fig. 4 reveals the details of our proposed video
tracking system.

VIEDO TRACKING 5YSTEM
Back ground Filtering and Connected
Frame Modeling (GMM) elimination component

Creation

Load balancing
Using Device

el

Memory

Fig. 4 Real-Time Video Tracking System

The following steps are used for developing a real-time
video tracking system.

1. Video Frame Registration

This step is required whenever the camera is mounted on a
moving platform for example in airborne video surveillance.
First among the three steps in the registration process involves
motion estimation with a block matching algorithm. Next, a
least-square fit is used to reduce the field of motion vectors to
an affine transformation, and this transformation is
accumulated with the previous transformation to produce the
cumulative transformation over the video stream. Finally, the

input video frame is transformed according to this cumulative
transformation to produce the registered video frame. The
most computational part of this process involves the first step
of motion estimation using block matching. Thus, parallel
implementation of block matching algorithm is highly
desirable.

2. Background Modeling and Detection of Foreground
Regions

This step forms the bulk of computation which varies
depending on the complexity and robustness of the algorithm
used. We plan to implement a popular technique called
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Mixture of Gaussian (MOG) background modeling [26] and a
state-of-the-art Flux tensor motion estimation algorithm for
this purpose. Compute intensive characteristic and available
parallelism in these algorithms make them a suitable candidate
for parallelizing on multi-core processors. If enough numbers
of threads are created, then SPMD (single program multiple
data) is quite convenient for exploring the parallelism.

3. Consolidation, Filtering and Elimination using Binary
Morphology

With a suitable threshold operation, a binary image or mask
corresponding to moving regions is created. Morphological
operations "opening" and "closing" are applied to the objects
[27]. There is high degree of parallelism in this step, and it is
computationally expensive step, as these operators have to be
applied in several passes on the whole image. Therefore, faster
parallel implementation is not only intuitive but indispensable
for real-time processing.

4. Connected Component Labeling

Connected components labeling is one of the most time
consuming operations. Several authors proposed variant
approaches to reduce the time requirement. In this process
each region or blob must be uniquely labeled, in order to
uniquely characterize the object pixels underlying each blob.
Since there is spatial dependency at every pixel, it is not
straightforward to parallelize it.

5. Object Statistics and Tracking

Object statistics (bounding box, centroid, area, perimeter
etc.) for each blob/object is calculated and used for tracking

them over a sequence of frames for trajectory analysis. There
are various approaches for parallelizing an algorithm on a
heterogeneous multi-core processor, depending on the data
partitioning strategy. Bounding box approach is used in our
paper. Consequently, different levels of optimization can be
achieved for extracting parallelism.

6. Load Distribution between Processors

The main step of these algorithms is to determine the
number of tiles to be generated. The number of tiles
corresponds to the amount of threads. If only a thread exists,
the computation is just sequential computation. With two or
more threads then the image is divided into distinct areas.
Each thread is responsible for processing the pixels included
in its tile and to execute different tasks but considering
maintaining synchronization between all the processor,
otherwise there will be the situation of deadlock between
processors.

B. Performance Analysis

In order to do performance analysis, comparisons will be
made by taking images of differing sizes. Comparisons tables
and diagrams will be made based upon the outcomes of the
experimental results. Different image quality metrics and other
parallel computing parameters such as speedup, efficiency,
serial time, parallel time, response time and resource
utilization will be considered to evaluate the performance of
proposed algorithm. Fig. 5 reveals the results of various steps
employed, starting from RGB frames through to bounding
box-based tracking of selected objects.
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Fig. 5 Video Tracking System Responses (a) Original RGB Frames, (b) Morphological operation: Erosion, (¢) Morphological operation:
Dilation, (d) Bounding boxes using Connected Components

IV.EXPERIMENTAL APPROACH

The parallel implementation of the Real Time Video
Tracking system workload was executed on three NVIDIA
GPUs, the first GPU used is the GeForce GTX 280 on board a
3.2 GHz Intel Xeon machine with 1GB of RAM. The second
one was the GeForce 8400 GS on board a 2 GHz Intel
Centrino Duo machine. The third was Quadra K2000 with 384
cores on board Xeon workstation Z620.

The GTX 280 has a single precision floating point
capability of 933 GFlops and a memory bandwidth of 141.7
GB/sec, it also has 1 GB of dedicated DDR3 video memory
and consists of 30 multiprocessors with eight cores each,
hence a total of 240 stream processors [28]. The 8400 GS has
a memory bandwidth of 6.4 GB/sec and has two
multiprocessors with eight cores each, i.e. 16 stream
processors, single precision floating point capability of 28.8
GFlops and 128 MB of dedicated memory. It belongs to the
compute capability 1.2. The NVIDIA Quadro K2000 offers
the perfect blend of performance and the latest productivity
enhancing technical innovations at a very reasonable cost for a
wide range of leading professional applications. As well as,
2GB of GDDRS5 GPU memory, 384 SMX CUDA parallel
processing cores, the ability to drive up to four displays
simultaneously, and full Shader Model 5 compatibility; all in a

single slot form factor which requires no auxiliary power to
deliver full performance.

The development environment used was Visual Studio 2010
and the CUDA profiler version 2.2 was used for profiling the
CUDA implementation. The image sizes that have been used
are 1600x1200, 1024x768, 640x480, 320%240 and 160x120.

TABLEI
EXECUTION TIME FOR GMM
Image Size K2000 (ms) GTX 280 (ms) 8400 GS (ms)
320%240 0.023 0.155 3.551
640%480 0.0494 0.393 17.585
1024x768 0.0817 0.632 31.866
1280x720 0.1905 0.728 42.856
1600x1200 0.392 1.127 94.772
TABLE IT
TIME FOR MORPHOLOGICAL OPERATIONS
Image Size K2000 (ms) GTX 280 (ms) 8400 GS (ms)
320%240 0.023 0.0586 0.465
640x480 0.112 0.1254 1.75
1024x768 0.24 0.2429 3.61
1280%720 0.62 0.65 12
16001200 0.582 0.5625 11.7

The GMM, used for background modeling, has the kind of
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parallelism that is required for implementation on a GPU. As
evident by Table I, the time of execution rises with the increase
in image size and the amount of speedup achieved also
increases, almost proportionately; this is due to the execution
of a large number of threads that keeps the GPU busy.

Morphological image operations contribute a major portion
of the computational expense of the AVS workload. In our
approach we are able to drastically reduce their execution time
compared to the sequential approach.

As evident by Table II, the time of execution for
morphological operations increases with image size. Further it
is evident from the table that K2000 GPU has taken less times
compared to other (GTX 280, 8400 GS).

A. Memory Sharing between Device and Host

Shared memory was used to reduce the global memory
accesses keeping in view the shared memory size (16 KB). As
can be seen from the a total of 4 blocks (192x4 threads out of a
maximum of 1024 threads) could be executed in parallel on a
multiprocessor, giving an occupancy of 0.75. As a result of
using K=4, all the global memory loads were coalesced due to
lesser bank conflicts. The use of streaming reduced the
memory copy overhead greatly in 8400 GS to the extent
anticipated in other cases. This is due to the efficient memory
copying in K2000 and GTX 280 - compute capability 1.3.
Moreover, the use of texture memory and address clamp modes
have reduced the percentage of divergent threads to <1%. On
the 8400 GS also a significant speedup has been achieved. In
each of the above kernels page-locked host memory (a feature
of CUDA 2.2) has been used whenever only one memory read
and write were involved which increased the memory

throughput. Connected Component Labeling is extremely time
consuming one compared to GMM and Morphological
Operations. For each frame and for each pixel 4-neighbors
have to be processed, and based on their value, a label will be
made. Equivalencies have to be resolved among the labels. The
Floyd-Warshall (F-W) algorithm has been used for this
purpose. Execution timings across above GPUs are provided in
Table II1.

TABLE III
TIME FOR CONNECTED COMPONENT LABELING

Image Size K2000 (ms) GTX 280 (ms) 8400 GS (ms)
320%240 0.79 1.604 0.522
640x480 1.76 3.654 1.34
1024x768 2.3 6.631 4.5
1280%720 5.05 7.656 14.1
1600%x1200 11.06 11.926 46.2

V.CONCLUSIONS

Architectures dedicated to video surveillance cost as much
as millions of dollars at high range, thousands of dollars at
medium range and hundreds of dollars at low range. Processing
of high resolution frames with higher frame rate require high-
end surveillance systems while low resolution frames with low
frame rates are supported by medium and low range systems.
We focus on K2000, GeForce GTX 280 and the 8400 GS
(medium range) and low range (GPUs) for this purpose. Image
size of 1024 x 768, 15 frames per second could be processed
with 8400 GS and an image size of 640x480 close to 30 frames
per second could be easily processed on all the above as shown
in Fig. 6.
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e 320240 | 640<480 |1024x768 | 1280%720 [1600x1200
+—K2000 (ms) 0.836 1.9214 26217 5.8605 12.034
B GTX 280 28(ms) 18176 41724 7.5059 0034 136155
--8400 GE (ma) 4538 20675 30076 680356 152672
Fig. 6 Comparison of total time for image of different sizes
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