
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

815

Teaching Students Collaborative Requirements
Engineering: Case Study of Red:Wire

Dagmar Monett, Sven-Erik Kujat, Marvin Hartmann

Abstract—This paper discusses the use of a template-based
approach for documenting high-quality requirements as part of course
projects in an undergraduate Software Engineering course. In order
to ease some of the Requirements Engineering activities that are
performed when defining requirements by using the template, a new
CASE tool, RED:WIRE, was first developed and later tested by
students attending the course. Two questionnaires were conceived
around a study that aims to analyze the new tool’s learnability as
well as other obtained results concerning its usability in particular
and the Requirements Engineering skills developed by the students
in general.

Keywords—CASE tool, collaborative learning, requirements
engineering, undergraduate teaching.

I. INTRODUCTION

REQUIREMENTS Engineering (RE) is a sub-discipline

of Software Engineering (SE) that includes all

activities associated with “understanding a product’s necessary

capabilities and attributes” [1] in order to define both

its functionality and the constraints on its operation [2].

Wiegers and Beatty [1] split these activities into two groups:

Requirements development, which encompasses the elicitation,

analysis, specification, and validation of requirements; and

Requirements management, which deals with tracking,

managing, controlling, and tracing requirements.

As defined by the International Requirements Engineering

Board e.V. (IREB) [3], RE is a “systematic [...] approach to the

specification and management of requirements” that focuses

on stakeholders’ desires and needs in a process-oriented way

[4] that comprises the activities mentioned above. All of them

should in one way or another be carefully considered, however.

Both the scope and the depth of these RE activities depend

on the software process model (e.g. waterfall, agile, etc.) that

is used and how it is iterated. For example, documenting

requirements in a waterfall approach such that they can be

understood by all involved stakeholders and, at the same time,

by following quality standards not only for single requirements

but also for whole specifications could be a very complex

task [5]. It is even a key activity in iterative and agile

approaches. Documenting requirements is one of the most

important activities in RE.

How to overcome the difficulties that might arise when

documenting requirements has been widely reported in the

D. Monett, Professor is with the Computer Science Dept., Faculty of
Cooperative Studies, Berlin School of Economics and Law, Germany (e-mail:
Dagmar.Monett-Diaz@hwr-berlin.de).

S.-V. Kujat, student and M. Hartmann, student are with the Computer
Science Undergraduate Course IT2013, Faculty of Cooperative Studies, Berlin
School of Economics and Law, Germany (e-mail: sv-kujat@t-online.de,
marvin.hartmann1@gmail.com).

literature. See the guidelines for writing requirements in [1]

and [6], to name a few. For example, Rupp and Wolf introduce

the SOPHIST Set of REgulations in [6], a compilation of rules

to help requirements engineers “to systematically recognize

and correct effects in natural-language requirements” in a

proper way. Yet considering a set of guidelines or rules

for documenting requirements might seem complicated at

the beginning. Actually, it is highly dependent not only on

well-founded knowledge about the topic or area in which

requirements are to be defined but also on the experience the

requirement engineers might have. This is why semi-structured

methods, like template-based approaches, have been used

as powerful mechanisms with the aim of simplifying and

speeding up this RE activity. One of them will be introduced

in what follows.

II. SOPHIST TEMPLATE FOR SOFTWARE REQUIREMENTS

A template suggested by Rupp and Joppich [7] for creating

high-quality requirements is shown in Fig. 1. It acts as a

blueprint for phrasing requirements whilst avoiding some of

the linguistic defects that could lead to loss or distortion of the

information that is to be documented and, thus, to low-quality

requirements.

The requirements template structures a requirement

syntactically. Filling the template with content for each single

requirement is a process that involves the following steps (see

[7] for more), which are mainly performed in a sequential

order:

1) Defining the degree of legal obligation: Setting the

degree of importance that stakeholders assign to the

requirement is of great significance. Keywords like

“shall,” “should,” and “will” are often used to describe

what is requested from the system.

2) Specifying the functionality that is requested: Clear

“process verbs” help to distinguish what is to be done

by the system.

3) Classifying the type of functionality: Is it an autonomous

system action, a user interaction, or an interface

requirement that depends on third parties?

4) Defining the object and the adverbials: Complementary

information related to the functionality should be

provided. This is commonly written at the end of the

sentence.

5) Formulating logical and temporal conditions: A

subordinate clause preceding the requirement sets down

the conditions for the functionality to be executed.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

816

Fig. 1 SOPHIST requirements template, adapted from [7]

6) Applying the SOPHIST Set of REgulations: A further

revision of the requirement’s semantic is advisable, since

some linguistic defects could still be present.

However, mastering this process is not a trivial task

for untrained requirements engineers or for RE novices, as

undergraduate students attending SE courses might be in

general. For this reason, as well as because there is enough

related literature about it in the German language, training

of Computer Science (CS) students at the Berlin School

of Economics and Law (BSEL) on the documentation of

requirements following the SOPHIST requirements template

has been an important learning goal.

A. Educational Applications of the Template

The SOPHIST requirements template has been used in

numerous software industry projects so far [8]. It has also been

used successfully in Software Engineering courses at BSEL

since 2011. In particular, the SOPHIST requirements template

has found application in the following educational topics:

• Natural language description of the flow in UML1 activity
diagrams: UML activity diagrams are given to the

students in SE lab sessions. The students describe the

diagrams’ flow in a collaborative exercise using, for

example, Google Docs. The sentences should have the

same syntactic structure as the SOPHIST requirements

template. A discussion follows, where learners and

instructors revise the answers and apply the SOPHIST

Set of REgulations further, if needed.

• Construction of UML activity diagrams from
requirements that already follow the SOPHIST
requirements template: Documented requirements

in the form of sentences that follow the template

from Fig. 1 are given to the students. They construct

UML activity diagrams using a UML tool. Notation

elements and alternative diagrams are discussed with

the instructors after the students have presented their

solutions.

• Documentation of software requirements in SE course
projects: Students work on their course projects in class

and remotely. They document the software requirements

using, for example, Google Sheets and Google Docs.

Instructors give feedback on the state of their work

1Unified Modeling Language.

by giving advice on the correct use of the SOPHIST

requirements template, when necessary.

Not only the theory but also some interesting examples and

exercises as well as suggestions on the use of the SOPHIST

requirements template can be found in [9], [10]. Having

followed many of them on the SE courses at BSEL, we

have found more and more students who successfully use the

syntactic structure of the template to define requirements of

course projects in other CS modules and in their own Bachelor

theses at the end of their studies at BSEL. This speaks for itself

and gives us strong positive feedback about our educational

approach.

B. CASE Tools for RE

Computer-Aided Software Engineering (CASE) tools have

been used to support almost all processes and activities of

the software life-cycle for decades. There exist many CASE

tools for supporting RE and its activities (an updated list of

requirements management tools can be found in [11]). A first

analysis of several tools for RE tasks provided no results for

our concrete educational purposes; however, available CASE

tools for requirements documentation and management were

either commercial or offered no support for the SOPHIST

requirements template at all.

Our goals were fairly simple: We needed a CASE tool

(see [12] for a classification of CASE technology) to support

specific tasks from the software life-cycle. In particular, we

needed a software product for supporting the activities of

requirements development that could be used in the tasks

of documenting and analyzing software requirements using

the SOPHIST requirements template in students’ course

projects. We wanted the students to focus on the definition

of highly-qualitative requirements by using the template-based

approach from Rupp and Joppich [7] without having to define

all template components from scratch or by hand.

In consequence, the decision to implement a simple, easy

to use CASE tool for use by CS students of the SE

courses at BSEL was an alternative to automating the process

of defining requirements using the SOPHIST requirements

template introduced so far. It should have a very short learning

curve, however, since many researches have indicated not

only the benefits of CASE tools but also their learning curve

problems and learnability issues in educational settings (see

[13] for a deeper discussion on these subjects).



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

817

The implementation of such a new tool was considered

as a topic for undergraduate student research projects in

advanced semesters. The first two prototypes were developed

by two CS students after they had attended their respective

SE undergraduate courses from fall 2012 and fall 2013 (one

student each time). In both cases, the students had already

mastered the work with the template-based approach in class

and, thus, it was much easier for them not only to define

the requirements for the new software but also to design and

implement it. A third prototype was developed by two other

students between the months of January and July 2015 after

they had attended the SE course from fall 2014. That prototype

benefited greatly from the former versions and added core

functionalities for team work. It will be introduced in the next

section.

III. RED:WIRE

RED:WIRE is both a documentation and a requirements

management tool, developed by and for students, that

supports the definition and management of user and

software requirements, as suggested in [14], and mirrors

the template-based definition of requirements from [7] in a

collaborative way. It allows students in particular and users

in general to fill out a pre-defined template that structures a

requirement syntactically and that avoids, to a great extent,

the presence of linguistic defects that are common in the

natural language. The most important issues concerning its

development will be introduced in the sections that follow.

A. Analysis and Design

RED:WIRE’s graphical user interface was designed

using the Bootstrap (see http://getbootstrap.com for

more) CSS2-framework. The framework allows an easy

implementation of the basic layout structure, which is

separated into four major areas: header, footer, menu, and

content areas.

Figs. 2-4 show screenshots of RED:WIRE’s dashboard. The

header is located at the top of the page and contains the

RED:WIRE logo. The footer is located at the bottom of the

page and holds the changelog, the current version, and contact

information about the developer team.

The menu is located at the left hand side and is a quarter of

the width of the document in size. Below the menu is a news

feed with changes and alerts about actions performed. Finally,

on the right hand side and three quarters of the width of the

document in size, there is a content area that changes when

the user requests a server-side action. It displays the results

afterwards and is the area that has the most interactions of

RED:WIRE’s users.

Fig. 2 shows RED:WIRE’s functionality for defining

software requirements. It can be accessed by clicking on

the CREATE REQUIREMENT option from the menu. In its

current implementation, it uses a German version of the

template-based approach from Rupp and colleagues introduced

2Cascadian Style Sheet.

in Section II. The template’s components are set in a fixed

position to help users enter the requirement. Some additional

components were added to the template, too: an identifier

to uniquely differentiate the requirement, information about

dependencies or other requirements directly related to the

current one that is being defined, a priority, and the status

of the requirement (i.e., in backlog, in progress, being tested,

done) in order to track changes to the requirement and manage

it better.

Fig. 3 shows the same area where the extended SOPHIST

requirements template is used but filled with content, that

is, for the case of one specific requirement. Fig. 4 shows a

list of requirements that have been defined in this way. The

user can not only edit previous information but also remove

requirements from the list, in case they are no longer needed.

The table with requirements can be accessed too by clicking

on the HOME option from the menu. There is also an option

to export the list of requirements to other formats.

Fig. 5 shows the login page that appears when the Web

server is accessed. It has a lightweight design consisting only

of two input forms, in which the user’s credentials are inserted.

A dialog pops up when a user clicks on the REGISTER button.

It contains simple input forms for the user’s name, password,

and e-mail address.

There is an administrator page, too, which has both the same

structure and the same design as the dashboard page but fewer

options. On its right hand side, it shows a list of all registered

users. The administrator can remove users from the database

if needed.

B. Implementation

The implementation of RED:WIRE took place in a

client-server architecture. The backend-server consists of an

Apache web server that serves the HTML pages to the

clients, a MySQL database to store all the software and

user data, and additional PHP3 modules for the Apache web

server to interpret the clients’ requests. These are sent using

JQuery’s AJAX,4 which calls PHP files. Fig. 6 shows the

scheme of the relational database structure that is used in

RED:WIRE. It consists of four tables for dealing with users

who are part of teams and who define requirements, which

can be of different types or categories (e.g., functional and

non-functional requirements).

The frontend is written in HTML.5 The HTML elements are

formatted by CSS. The responsive layout uses CSS-classes

of the Bootstrap framework to get a dynamically scalable

page that also works on a mobile device. Another framework,

called SASS (see more at http://sass-lang.com), is used to

make the CSS development for different devices easier. The

animations and function calls are generated by JavaScript,

explicitly JQuery (available at https://jquery.com), to ease

the manipulation of HTML data object models and to use

asynchronous calls to access stored data via PHP files. By

3Pre-Hypertext Processor.
4Asynchronous JavaScript and XML.
5Hypertext Markup Language.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

818

Fig. 2 Red:Wire’s requirements template window without content (German version)

Fig. 3 Red:Wire’s requirements template window filled with content. Translated to the English language, the requirement reads: “On the day of the lecture,
Red:Wire shall save requirements.” Id=2, Dependencies=1, Priority=3, Status=in backlog

Fig. 4 A list with two requirements and their dependencies. The second requirement depends on the realization of the first one



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

819

doing this, the data become available shortly after the call’s

execution, without reloading the page.

Fig. 5 Red:Wire’s login window (English version)

Fig. 6 Database tables and their relationships

C. Testing

Different test scenarios were defined for black-box testing

RED:WIRE’s functionalities. They mainly comprised both

functional and usability tests of menu options and end

users’ activities on different Web browsers (Internet Explorer,

Mozilla Firefox, and Google Chrome) like the following ones:

• Logging in, registering and logging out users.

• Database and server connectivity and data exchange.

• Management of teams with several users.

• Working with requirements and lists of requirements.

• Performance when more than a thousand requirements

are managed.

• Changing the profile data of users.

The source code was also tested following white-box testing

methods. A deeper usability testing was performed with a

group of students from the SE course from fall 2015. More

on this will be addressed in the next sections.

IV. RESEARCH METHODOLOGY

Students from the SE course from fall 2015 were informed

about the research purposes of our study, that is, related to the

use, testing, and evaluation of the new CASE tool developed

by former students in particular, that is, RED:WIRE, as well

as the learning and mastering of RE activities and processes

in general. Appropriate closed-ended questions with Likert

scales as well as a few open-ended questions were prepared

for inclusion in two surveys: a pre-survey, before students’

work with requirements in class or on their course projects,

and a post-survey, by the end of term and after the final project

presentations and work with the new CASE tool. The use

of RED:WIRE was mandated for documenting and managing

requirements. Other tools for collaborative work, for example,

were suggested by the teaching staff but the students had free

choice regarding their use.

The students were advised on the concrete use of

RED:WIRE as part of a laboratory session. First, a detailed

example of how to describe the flow of a UML activity

diagram using the SOPHIST requirements template (see

Section II-A) was demonstrated and discussed in class.

Then, each student had the opportunity to write the natural

language description of some actions and decision nodes

of a new UML activity diagram that was distributed to

them, thereby using the syntactic structure of the SOPHIST

requirements template. They documented the descriptions

collaboratively using Google Docs. A discussion in plenum

followed, where the different activity flows were analyzed

and complemented with further input from students. Finally,

each student documented her or his resulting sentences in

RED:WIRE, where the template was already available to ease

the process.

Further, a meeting with each team and with the presence

of the teaching staff was coordinated. In these meetings, team

leaders discussed project tasks with the team members and

distributed tasks among them. The teaching staff gave advice

on the different major areas into which the course project could

be divided (e.g., software requirements for each of the course

project subjects). The teams agreed on the selection of experts

for each of these subjects as well as setting initial deadlines

for the RE activities to be performed by them.

Some lectures and laboratory sessions included extra time

for teamwork activities and exercises. For example, further

methods and tools were introduced and explicitly used for

modeling and graphically documenting requirements (like

UML tools) in class. Simultaneously, a close contact with

RED:WIRE’s developers was maintained because they fixed

eventual errors while working on new versions of the program.

A. Research Questions

One of the main goals of our study was for several

students in the role of end users to provide valuable

feedback concerning functional and non-functional aspects

of the new CASE tool, that is, RED:WIRE. The chance for

an entire undergraduate course to test a tool that is still

under development by other undergraduate students on more



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

820

advanced courses is an excellent opportunity. Furthermore,

RED:WIRE is expected to successfully support requirements

analysis tasks by helping students with the definition of

high-quality requirements. Similarly, collaboration between

team members for documenting and managing requirements

when using RED:WIRE is expected to be fostered. Since the

SE course places emphasis on RE processes and their tasks,

it is also expected that students will develop new skills in

these topics, including the learning of new CASE tools. Thus,

the main research questions driving our investigation are as

follows:

Q1: Do students improve their RE skills (perceived

improvement) after attending the course?

Q2: Can RED:WIRE be learned easily by the students?

Q3: Does RED:WIRE allow the successful documentation

and management of requirements?

Q4: Is RED:WIRE an adequate CASE tool for

collaborative work when documenting requirements?

Q5: Are students satisfied with the use of RED:WIRE

(subjective satisfaction)?

Q6: Are there functional and/or non-functional issues that

could be fixed after testing RED:WIRE?

Q7: Are there functionalities that are new or nice to have

that could be added to RED:WIRE’s repertoire?

The following sections present the two surveys that were

conducted together with the results that were obtained.

B. Pre-Survey Results

A short pre-survey was administered to the students after the

RE lectures in which the theoretical content was introduced

and before the corresponding practical sessions took place in

the laboratory. Of the 33 students attending the SE course,

a total of 23 answered the pre-survey questions, giving a

response rate of 70%. There was one female student for every

ten male students in the group. The gender and age proportions

of those who answered the pre-survey were as follows: 13%

of the respondents (3 out of 23 students) were female and 87%

were male; 13% were aged 19 years or less, 13% were aged

26 years or more, and the rest were between 20 and 25 years

old.

One of the goals of the pre-survey was to find out

whether the students had had any experience with software

requirements before attending the course. The question was

answered positively by 48% of the respondents (11 students),

that is, almost half of the students had worked with

software requirements to some extent. However, less than half

from them had any experience with eliciting, documenting,

specifying, or managing software requirements. With respect

to a question asking about online tools for documenting

requirements, only 34.8% of the participants (8 students)

answered that they knew at least one tool for doing this.

Among them, only three students (13% of the total) had

actually used an online tool for this RE task.

How the above records changed after the students presented

the results of their course projects at the end of the semester

will be topic of the following section.

C. Post-Survey Results

A similar but extended survey was administered to the

students at the end of the SE course. It included a subset

of the questions from the pre-survey, to allow comparison,

as well as new questions to analyze the usability in general

and the learnability in particular of RED:WIRE. The students

had a free choice on the selection of software tools to

support teamwork on their course projects. However, the use

of RED:WIRE was mandatory for documenting requirements,

for the reasons introduced in Section IV.

A total of 24 students (one more than in the pre-survey)

answered the post-survey questions, giving a response rate of

72.7%. Two of them (8.3%) were female and the rest (91.7%)

male; 25% of the respondents were aged 19 years or less,

58.3% were aged between 20 and 25 years, and 16.7% were

aged 26 years or more.

Two thirds of the respondents (16 students) gave a

positive answer to the question involving experience with

software requirements. This represents an increment of about

19% with respect to the pre-survey responses. The great

majority (95.8%) answered that they had had experience with

eliciting (58.3%), documenting (58.3%), specifying (37.5%),

and managing (16.7%) software requirements. This shows that

RE activities were assigned differently in the teams and that

not every student was equally involved in all of the tasks of

the RE development, contrary to what we initially supposed.

The work of Senapathi [13] was particularly helpful in the

selection of questions to be posed to the students to evaluate

the learnability of RED:WIRE. The questions are listed in

Table I.

TABLE I
CLOSED-ENDED LEARNABILITY QUESTIONS ORGANIZED BY

CATEGORIES, ADAPTED FROM [13]

(A) It was easy for me to get started and to learn how
to use RED:WIRE.

(B) I was able to use RED:WIRE right from the
beginning, without having to ask other persons for help.

Ease of learning (C) I was able to try out new RED:WIRE functions by
myself.

(D) It was easy for me to remember commands from
one session to another.

(E) The explanations, tooltips, and headings that were
provided helped me to become more and more skilled
at using RED:WIRE.

(F) RED:WIRE is consistently designed, thus making it
easier for me to do my work.

Consistency (G) I find that the same function keys are used
throughout the program for the same functions.

(H) RED:WIRE behaves similarly and predictably in
similar situations.

Predictability (I) When executing functions, I get results that are
predictable.

(J) If I make a mistake while performing a task, I can
easily undo the last operation.

Error messages (K) Error messages clarify the problem.

(L) I perceive the error messages as helpful.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

821

Fig. 7 Learnability of Red:Wire according to students’ responses

Fig. 7 shows the responses that were obtained for each

learnability question from (A) to (L). The most distinctive

results for the different categories can be summarized as

follows:6

Ease of learning
(A) The majority of the respondents (58.3%) agreed

or strongly agreed that it was easy to get started

with RED:WIRE and to learn to use it, (B) 66.7%

were able to use the CASE tool without requiring

help from third parties, (C) 45.8% were able to try

out new functions without any problem, and (D)

45.8% responded that they could easily remember

RED:WIRE’s commands from one section to another.

However, (E) 37.5% of the respondents were not

sure whether explanations, tooltips, and headings

had a positive or negative impact on helping them

becoming more skilled when using the tool. The

explanations were viewed positively by 16.7% of

them and negatively by 20.8%.

Consistency
(F) Many more respondents agreed with the

statement that RED:WIRE was consistently designed,

thereby helping them to do their work (37.5% agreed

or strongly agreed), than agreed with the contrary

statement (8.33% disagreed or strongly disagreed).

(G) The responses for the same function keys being

used throughout the program for the same functions

show very similar results.

Predictability
(H) RED:WIRE’s behavior cannot be predicted

positively in similar situations. At least 45.8% of

the respondents thought that this was the case after

6On average, 26.7% of the respondents provided no answer to each of
these questions. This is related to the dissimilar use of RED:WIRE and to the
distribution of RE tasks in the teams: not all team members worked with the
tool, as originally advised and supposed.

having to deal with software errors or unexpected

functioning. (I) In general, prediction of the results

of RED:WIRE’s behavior is very unstable at the

moment (25% positive answers, 20.8% neutral, and

25% negative ones).

Error messages
(J) For 54.2% of the respondents, undoing the

most recent operation was not always possible

in RED:WIRE; (K) 50% found error messages

confusing, and (L) 62.5% found them not helpful

at all.

The above overall ratings confirm both the results obtained

by Senapathi and the ones from the literature discussed by her

in [13]. Essentially, the highest rated questions, that is, the ones

with the most favorable evaluations, belong to the category

ease of learning, which indicates that RED:WIRE could be a

good option for novices when documenting requirements (i.e.,

it has a short learning curve and is easy to learn). That the

lower rated questions belong to the category error messages
is not surprising and should not be correlated with other

categories, as discussed in [13], too.

Other general and usability questions were aimed at finding

out about the overall subjective satisfaction with RED:WIRE,

its performance, and the collaborative work with the tool, to

name but a few. Table II shows these questions and their

responses.

The ratings from Table II show a clear need for further

development and testing of RED:WIRE. At the same time,

the feedback provided by the students is very helpful in this

respect and will be considered by the current developers of

RED:WIRE as well as by new students that join its team.

Interestingly, students rate their software requirements analysis

capabilities without CASE tool support very favorably. This

points to the successful achievement of the learning goals that

were set in the lectures and laboratory sessions in advance.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:5, 2016

822

TABLE II
OTHER GENERAL CLOSED-ENDED QUESTIONS AND THEIR RESPONSES

(MEAN AND STANDARD DEVIATION) FOR RESPECTIVE 5-POINT,
UNMARKED SEMANTIC DIFFERENTIAL SCALES (WITH 1 POINT FOR

NEGATIVE TO 5 POINTS FOR POSITIVE WORDS)

Question Mean Std.dev.
(i) How do you assess your software requirements
analysis capabilities without a CASE tool support?

3.58 0.76

(ii) How do you assess your software requirements
analysis capabilities with the support of RED:WIRE?

2.83 1.28

(iii) How satisfied are you with software
requirements documentation functionalities of
RED:WIRE?

2.04 1.06

(iv) How satisfied are you with the performance of
RED:WIRE?

2.46 1.12

(v) How appealing do you find the graphical user
interface of RED:WIRE?

2.50 0.96

(vi) How satisfied are you with collaborative work
functionalities in RED:WIRE?

2.17 1.14

(vii) How much did RED:WIRE support you with the
software requirements documentation?

1.92 0.86

(viii) How much you have improved your software
requirements skills by working with RED:WIRE?

1.88 0.78

V. CONCLUSIONS

RE processes deal with the understanding of products’

capabilities and attributes by involving stakeholders in

several activities and tasks that aim to produce high-quality

requirements. When supported by appropriate CASE tools,

these activities can be achieved better and stakeholders’

interactions and work can both be eased and improved.

Teaching and training of novices on these topics require a

careful selection of contents and tools together with adequate

learning goals that seek to develop and enhance the required

RE skills. Some of these skills include the documentation

and management of requirements. This paper introduced the

approach we used to achieve them in an ES undergraduate

course from fall 2015.

One distinctive aspect of our approach was the use of a new

CASE tool, RED:WIRE, developed by other undergraduate

students from more advanced years. We expected that the

tool would be easy to learn and conceived a research study

focusing on research questions presented in two different

questionnaires. Some of our expectations were fulfilled. Others

gave us a starting point for further work.

In general, students perceived that they had improved their

RE skills after attending the course. Laboratory sessions and

explicit demonstrations of how high-quality requirements can

be documented contributed to that. The mandated CASE tool

can be easily learned by non-experts and was indeed used

by all the teams. However, its functionalities could not be

exploited completely mainly due to unexpected behaviors or

lack of maturity as a software application. Finally, through

administering the questionnaires, it was possible to gather not

only very useful feedback from the end users (also testers) but

also practical input on which new capabilities and attributes

this software product should include in the future.

REFERENCES

[1] K. Wiegers and J. Beatty, Software Requirements, 3rd ed. Redmond,
Washington: Microsoft Press, 2014.

[2] I. Sommerville, Software Engineering, 9th ed. Pearson,
Addison-Wesley, 2011.

[3] IREB. International requirements engineering board. International
Requirements Engineering Board. Accessed: Jan. 14, 2016. [Online].
Available: https://www.ireb.org/en

[4] M. Glinz, A Glossary of Requirements Engineering Terminology, IREB
e.V. and Department of Informatics, University of Zurich, May 2014.

[5] C. Rupp, “Chapter 1: In medias RE,” in Requirements-Engineering und
Management: Aus der Praxis von klassisch bis agil. Hanser, 2011, pp.
1–21.

[6] C. Rupp and E. Wolf, “Chapter 6: The SOPHIST Set of REgulations
– Psychotherapy for Requirements,” in Requirements-Engineering und
Management: Aus der Praxis von klassisch bis agil. Hanser, 2011, pp.
115–156.

[7] C. Rupp and R. Joppich, “Chapter 7: Templates – Construction Plans
for Requirements and for More,” in Requirements-Engineering und
Management: Aus der Praxis von klassisch bis agil. Hanser, 2011,
pp. 157–176.

[8] SOPHIST. Sophist: Start. Accessed: Jan. 14, 2016. [Online]. Available:
https://www.sophist.de/en/start/

[9] S. Kleuker, Grundkurs Software-Engineering mit UML: Der
pragmatische Weg zu erfolgreichen Softwareprojekten, 2nd ed.
Munich: Vieweg+Teubner Verlag, 2011.

[10] C. Rupp, Requirements-Engineering und Management: Aus der Praxis
von klassisch bis agil, 6th ed. Munich: Hanser, 2014.

[11] A. Birk and G. Heller. (2015) List of requirements management tools.
Accessed: Jan. 14, 2016. [Online]. Available: http://makingofsoftware.
com/resources/list-of-rm-tools

[12] A. Fuggetta, “A Classification of CASE Technology,” IEEE Computer,
vol. 26, no. 12, pp. 25–38, 1993.

[13] M. Senapathi, “A Framework for the Evaluation of CASE Tool
Learnability in Educational Environments,” Journal of Information
Technology Education, vol. 4, pp. 61–84, 2005.

[14] C. Mazza et al., Guide to the selection and use of CASE tools,
ESA Board for Software Standardisation and Control, European Space
Agency, May 1994.


