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Performance Analysis of Reconstruction Algorithms
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Abstract—Diffuse Optical Tomography (DOT) is a non-invasive
imaging modality used in clinical diagnosis for earlier detection of
carcinoma cells in brain tissue. It is a form of optical tomography
which produces gives the reconstructed image of a human soft tissue
with by using near-infra-red light. It comprises of two steps called
forward model and inverse model. The forward model provides the
light propagation in a biological medium. The inverse model uses the
scattered light to collect the optical parameters of human tissue. DOT
suffers from severe ill-posedness due to its incomplete measurement
data. So the accurate analysis of this modality is very complicated.
To overcome this problem, optical properties of the soft tissue such
as absorption coefficient, scattering coefficient, optical flux are
processed by the standard regularization technique called Levenberg -
Marquardt regularization. The reconstruction algorithms such as Split
Bregman and Gradient projection for sparse reconstruction (GPSR)
methods are used to reconstruct the image of a human soft tissue for
tumour detection. Among these algorithms, Split Bregman method
provides better performance than GPSR algorithm. The parameters
such as signal to noise ratio (SNR), contrast to noise ratio (CNR),
relative error (RE) and CPU time for reconstructing images are
analyzed to get a better performance.

Keywords—Diffuse ~ optical ~ tomography, ill-posedness,
Levenberg Marquardt method, Split Bregman, the Gradient
projection for sparse reconstruction.

[INTRODUCTION

ANCER is found to be a terrible disease today which
cause abnormal cell growth and it requires earlier
detection to cure completely. The widely used imaging
techniques [12] include Computed tomography (CT), X-ray,
positron emission tomography (PET) and Magnetic resonance

imaging (MRI) scan. CT scans emit a high volume of radiation.

It also poses health risks to unborn babies and it is not
recommended for pregnant woman. X-ray causes cell damage
[13]. PET scan has a low spatial resolution. Many cancers
cannot be detected via an ultrasound. The MRI scan is done in
an enclosed space so the people who are fearful of being in a
closely enclosed space, are facing problem with MRI. It also
produces high volume of noise during the scanning process.
MRI cannot be able to find all cancers and it cannot always
distinguish between malignant or benign tumor, which could
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lead to a false positive result. To overcome all these
disadvantages, the DOT is applied. DOT is a non-invasive,
functional imaging technique mainly used in bio-medical
industry. It is mainly used in the early detection of sarcomas at
the cellular level. It has the advantages of being non-ionizing,
portable, low-cost, and this is becoming a very useful
supplement to other imaging modalities like MRI, FMRI or
PET scan. Optical properties of a tissue can be obtained using
the principle of tomography. The DOT uses near-infrared light
to probe the optical properties of human tissues such as
scattering and absorption coefficient [2], [3]. This technology
has attracted much attention in clinical diagnosis, for example,
in breast cancer detection, monitoring of infant brain tissue
oxygenation level, functional brain activation studies and
cerebral hemodynamic [5]. It is a low cost alternate method
for existing medical imaging technology. It involves two
processes called forward problem and inverse problem.
Forward problem describes the photon propagation in tissue
and used to determine the optical flux in tissue boundary. The
inverse problem involves in the reconstruction of the tissue
image from the absorption, scattering coefficient and optical
flux of tissue, which was determined from light measurements
on the phantom surface of the boundary [1]. The inverse
problem is difficult to solve because of the issue of ill-
posedness that is the problem fails to be well posed. The
properties of well posed problems are a solution exists, the
solution is unique, and the solution depends continuously on
the data [6]. The third property is very important in finding the
inverse problem which determines the stability of our solution.
If the problem solution does not depend continuously on the
data, it leads to the ill-posedness problem. Here, the small
changes in the data will result in large changes in our solution.
To solve this problem, regularization methods are used that is
a regularization method introduced additional information in
order to create a well posed data [26], [27]. Diffuse optical
imaging [19]-[22] technique aims to produce the spatially
resolved images and enhances the low resolution functional
image with high resolution complementary structural
information using for an MRI scan and X-rays. In
experimental systems, a set of optical fiber was attached to the
boundary of the object as measurement detectors and sources.
The light source was laser sources in near-infra-red (NIR)
wavelength diffuse on the phantom and the scattered rays are
measured using photo-detectors [5]. In order to remove the ill-
posedness, the regularization technique [21] is used among
which Levenberg-Marquardt method (LM) is perhaps the most
commonly used methods. After the regularization process
Split Bregman reconstruction method [22]-[25] is used to
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reconstruct the image of a soft tissue. The reconstruction
algorithms such as Split Bregman and GPSR [28] algorithms
are analyzed here provide the better reconstruction algorithm.

Bo Bi et al. [5] provide the sparsity regularization technique
for image reconstruction in DOT. Gehre et al. [8] investigates
the potential of sparsity constraints in the electrical impedance
tomography (EIT) inverse problem of inferring the distributed
conductivity based on boundary potential measurements.
Chamorro et al. [15] proposes an algorithm called Algebraic
reconstruction technique - Split Bregman (ART-SB), which
provides the solution for L1-regularized problem. Wang et al
[27] present an evaluation of the use of Split Bregman
iterative algorithms for the Ll-norm regularized inverse
problem of electrical impedance tomography. Figueiredo et al.
[28] proposes a gradient projection algorithm for the boundary
constrained quadratic programming formulation of ill-
conditioned problems.

The organization of the paper is as follows; Section I we
discuss about the forward model using a radiative transfer
equation. In Section III, the inverse model is discussed which
is used to reconstruct an image of a soft tissue by evaluation of
frechet derivative between the actual measured data and true
data. Section IV discusses about the resultant reconstructed
images of absorption and scattering coefficient and section V
gives the conclusion drawn from the performance graph of
image reconstruction algorithms.

II.LFORWARD MODEL

The forward model of DOT is exercised to determine the
light propagation through the tissue medium when the incident
impulse and the absorption and scattering coefficients are
known. It describes the photon propagation in tissue [14]. In
the experimental procedure of acquiring potential
measurements is as follows. Initially, a set of s laser sources
and d detectors were placed on the boundary of the head. The
incident impulse is launched from the laser source and record
the resulting measurement from all the detectors. This
procedure can be modelled mathematically. The Radiative
Transfer Equation (RTE) [16] is used to describe the photon
propagation in tissues. The RTE [17] has many advantages
which include the possibility of modelling the light transport
through an irregular tissue medium.

The light diffusion equation [15] in frequency domain is,

(— Vk(nVv+ (,u(r) + ijj})(r, ®)
=[A, 0@+ A, d(0—-a)]o(r-T) )]

where ¢(r)is the photon flux, k(r) is the diffusion coefficient
and is given by

k(r)= ! 2
REMRGENG)

4, and g are absorption coefficient and reduced scattering
coefficient [20] (u, << u) respectively. The input photon is

from a source of constant intensity A, located at r =r, [4].

III.INVERSE MODEL
The inverse problem is used to reconstruct the image by
estimating scattering and absorption coefficients [10], [11].
The actual measurement has the noise level § ; that is
HMf _ MiH <5, where M/ represents the actual measurement
data and M), represents the true data [5]. The inverse problem
of DOT is to determine (/lts /Js) such that the following

nonlinear equation hold:

Flunu)=M7, (4, p)eD 3)

For i=1,......... , s. Since the inverse problem of DOT
suffers from severe ill-posedness, the regularization technique
[18] is used to reconstruct the image. The minimization of
Tikhonov functional is:
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for the coefficient g . Here R(y,) is a regularization penalty
function. By analyzing the minimization problem,
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Here we consider the standard reconstruction method.

A. Standard Reconstruction
The traditional L, norm squared penalty is considered to

minimize the following function,
1 2
R(uy) = IV sl @

13 i a
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Levenberg Marquardt [29] regularization method [7] is used
in the inverse problem of DOT. For every 1<i<s, the
forward operator is linearized around some initial guess ;,°;

F(u)=F(u)+F () - 1)+ R 5 9)
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where, Fi'( #50) is the frechet derivative of F(x,) and
R(ﬂso ;i) denotes the Taylor remainder for the linearization
around 4" .Substituting the above equation in j(,,) and the

higher-order remainder of R( ,uso;i) getting ignored [8].

' 2
R+ F i) =) =ME| sy (0)
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The Euler equation of the discrete problem is

DU () * (R + F ()t = ) = M)
b au, - i) =03 (11)

By solving (11) we can get the final resultant equation [9].

(i F () *F (i) + ](us 1) =Y R (R ) -mp (12)

‘I’ is the identity matrix.
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Fig. 1 Mesh diagram of inverse problem using the Split Bregman
method

IV.RESULTS AND DISCUSSION

In our simulation the scattering coefficient is reconstructed
with the standard regularization reconstruction algorithm. We
perform the simulations on a 3.0 GHz PC with 8 GB RAM in
MATLAB 2013b environment under Windows7. The
boundary measurements are the excitance received by photo-
detectors attached to the boundary of the tissue. The
Levenberg Marquardt regularization technique and Split
Bregman Reconstruction method for image reconstruction was
implemented and analyzed. Fig. 1 shows the Mesh diagram for

the inverse model solved using Levenberg Marquardt equation.

Fig. 2 shows the actual measurement values of absorption and
scattering coefficients of the normal people. Fig. 3 shows the
actual measurement values of absorption and scattering
coefficients of the cancer affected people. Fig. 4 provides the
graph that explaining the absorption coefficient values for

normal and cancer affected people. Fig. 5 explains the range
of scattering coefficient for normal and cancer affected people.
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Fig. 2 Reconstructed image for Normal people
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Fig. 3 Reconstructed images for Cancer affected people

TABLE I
PREDICTION OF ABSORPTION AND SCATTERING COEFFICIENT VALUES FOR
NORMAL AND CANCER AFFECTED PEOPLE

Optical parameters of a human tissue

Parameter name Normal people Cancer affected people

Absorption coefficient 0.01 2
0.5 2.3
1.1 2.5
1.2 2.7

Scattering coefficient 1.3 5
1.8 53

2 6
2.5 6.5

Table 1 gives the absorption and scattering coefficient
values of the normal people and cancer affected people
observed from the reconstructed image. This variation was
exploited in the reconstructed image; therefore, we can
distinguish the normal people and the affected people as
illustrated in Figs. 4 and 5. For the normal people, the
absorption coefficient is less than 2 c¢m™ and scattering
coefficient values is less than 5¢m™. For the cancer affected
people, the absorption coefficient is greater than 2 ¢m™ and
scattering coefficient value is greater than 5cm™.
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In the DOT reconstruction problems, the measurement data
are usually synthesized from the numerical solutions of the
forward problem. Here the ill-posedness of the inverse
problem is removed using regularization techniques. The
measurement techniques of the optical devices are very
limited, so we cannot accurately receive the existence from all
angles instead we receive a boundary angular averaged data.
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Fig. 4 Absorption coefficient distribution for normal and affected
people
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Fig. 5 Scattering coefficient distribution for normal and affected
people

Our purpose is to reconstruct the scattering coefficient and
the absorption coefficient which was assumed to be known.
By comparing the true value with the reconstructed value we
can obtain the reconstructed result. The number of nodes in
the forward problem mesh is always higher than the number of
nodes in reconstructing mesh. Number of nodes before the
reconstruction is 1097 and after the reconstruction the number
of nodes will be 286. We are able to get the values of
oxygenated and deoxygenated hemoglobin values from the
reconstructed image. By analyzing the above values, we can
able to find the difference between the normal tissue and the
cancer affected tissue. When the absorption and scattering

coefficient has higher values (above 2 cm™ and above 5 cm™!
respectively), there is prediction of tumor as malignant or
benign tumor of the soft tissue. We can reveal the resolution
of the reconstructed image by calculating SNR, CNR, Relative
solution error norm (RE) and CPU time. SNR is calculated as

P.
SNR - 1010&0(;9%'] (14)

noise

The CNR is a measure used to determine the image quality.
It is calculated using the mean and standard deviation values.
CNR is calculated as

CNR = SA_SB (15)

Oy

where S,,S; are the signal intensities of the images while 0

is the standard deviation of the pure image noise. The Relative
solution error norm is calculated as

_ true
e (16)
S

RE =

2

TABLE II
PERFORMANCE ANALYSIS OF RECONSTRUCTION ALGORITHMS

Parameters Split Bregman Method GPSR
SNR 5.7946 4.9431
CNR 11.157 9.6832

RE 0.1124 0.1684

CPU time (s) 72.231 76.243

Table II compares the parameters to study the performance
of reconstruction algorithms. The SNR value of the Split
Bregman method is greater than the GPSR algorithm and it
also has improved CNR than GPSR method. RE of a
reconstructed image should be low to achieve better
performance. The GPSR method provides high RE value, so it
is not an optimal solution for image reconstruction. Finally
Split Bregman method requires less CPU time to execute
compared to GPSR method. Fig. 6 shows the graph that
explains the performance analysis of both Split Bregman and
GPSR algorithms.
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Fig. 6 Comparison of parameters of two algorithms
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By comparing all the parameters in Table II, we can
conclude that the Split Bregman method is simple, efficient
and provides higher performance compared to GPSR.
Efficient reconstruction algorithm and proper regularization
techniques are essential to get high resolution images of a soft
tissue and to remove the ill-posedness. Split Bregman method
completely provides the linear solution and removes the ill-
posedness of the inverse problem of DOT.

V.CONCLUSION

By using the reconstruction algorithms in DOT, we
implemented the Levenberg-Marquardt regularization
algorithm and reconstruction algorithm called Split Bregman
method which is proven to be easy to reconstruct an image.
The performance of the Split Bregman method is compared
with the GPSR method. The Split Bregman method is
predictable compared with GPSR method. The Split Bregman
method performs steadily with various measurement data and
it also provides practical solutions for image reconstruction.
The Split Bregman method provides better performance than
GPSR method. The error percentage of Split Bregman method
is less than GPSR method. From the reconstructed image,
absorption and scattering coefficient values are analyzed to
find the difference between normal soft tissue and cancer
affected tissue. One way to increase the quality of a
reconstructed image is to increase the number of
measurements by adding more number of photo detectors.
Finally, the ill-posedness problem is removed by
regularization technique and high resolution image is achieved
through a Split Bregman reconstruction algorithm.
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