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Analysis and Simulation of TM Fields in Waveguides
with Arbitrary Cross-Section Shapes by Means of
Evolutionary Equations of Time-Domain
Electromagnetic Theory
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Abstract—The boundary value problem on non-canonical and
arbitrary shaped contour is solved with a numerically effective method
called Analytical Regularization Method (ARM) to calculate
propagation parameters. As a result of regularization, the equation of
first kind is reduced to the infinite system of the linear algebraic
equations of the second kind in the space of L. This equation can be
solved numerically for desired accuracy by using truncation method.
The parameters as cut-off wavenumber and cut-off frequency are used
in waveguide evolutionary equations of electromagnetic theory in
time-domain to illustrate the real-valued TM fields with lossy and
lossless media.
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1. INTRODUCTION

AVEGUIDES are structures that direct electromagnetic

energy along a desired path, such as transmission lines.
Maxwell’s equations predict that electromagnetic waves can
also be guided through hollow metallic tubes.

In  microwave engineering and microwave device
manufacturing such as filters, couplers power dividers,
polarizers and so, waveguides are a big fundamental partition.
Analyses of propagation characteristics, such as cut-off
wavenumber and propagation constant can be obtained easily,
if the waveguide contour is rectangular, circular, or elliptical.
For rectangular and circular case, it is easy to obtain with
separation of variables (SVM) [1]. For elliptical case, it needs
rigorous mathematical analysis and usage of Mathieu functions.
Nevertheless, it is clear that for investigating problem of
waveguides with arbitrary cross section, there is no paper which
shows the usage of SVM.

Non-canonical, arbitrarily shaped waveguides are, in modern
microwave systems, widely utilized, so accurate numerical
methods are required to solve waveguide problems with rather
arbitrary cross section.

Latest research shows that several techniques have been
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developed rapidly in this context, resulting in a very extensive
literature [1].

In this paper, ARM is used to obtain the propagation
parameters for arbitrary contours which are combined with the
waveguide evolutionary equations of electromagnetic theory in
time-domain. With the calculated parameters modal amplitudes
and basis equations of TM field are derived. Finally, the real
valued TM fields are illustrated for lossy and lossless media.

II. PREVIOUS WORK

In literature, firstly an improved finite-difference technique
is proposed for the electromagnetic eigenvalue problems. The
improved implementation of finite-differences technique is
presented based on well-known theories from [2]. Neumann
and Dirichlet boundary conditions for homogenous
Helmholtz’s equation and second order Lagrange interpolation
are used to determine the propagation constant, cut-off
frequencies, modal field distributions (by eigenvectors) for
finite differences technique. Nevertheless, error of calculating
cut-off frequencies is not convergent to error of calculating
eigenvector since there is no such parameterization for this
calculation. Also error of calculating cut-off frequency is
changing for each mode which does not show any convergence
either [1]-[3].

Secondly, a new method for increasing the accuracy and
decreasing the difficulty of the finite element method is
presented in this paper [3]. Authors of the paper states that to
improve the accuracy of such method, there are two ways. One
way is to divide region into finer segments and the other one is
to increase the order of the elements. However, increasing the
order of elements is very difficult, and needs a lot of
mathematical works. Previous papers focused on this method,
show that difficulty comes from the related shape functions
which are not properly described. In [3], rectangular waveguide
is taken as an example. The geometry is divided into a triangle
mesh. Some formulas for basic functions are presented to show
the practicality of the method. But for more complicated shapes,
more than a few dozen formulas are needed. Although with the
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usage of complex calculation the accuracy of the method could
be increased, author avoided this hard mathematical work and
decreased the accuracy of his own method.

Thirdly, a new method which is using boundary mode
matching by dividing the boundary counter as planar part and
circular arc is presented [4]. The transverse modes are presented
in terms of circular waves whose cut-off wavenumber and
amplitudes are the unknown values of the problem. Plane wave
expression is used for the planar part of the boundary because
Helmholtz’s equation is automatically satisfied. As for the arcs,
two different weighting functions are used since the center of
the arc might be the same with the center of the circular wave
or the different. Usage of fast Fourier transform does not require
the necessity to use quadratic functions and accelerates the
conversion between the different field representations [1].

III. PROPOSED METHOD

A. Analytical Regularization Method

ARM is used to solve the waveguides problems with
arbitrary cross-section. The mentioned method has strong
mathematical background and it is effective in numerical
analysis [5]-[8].

Algorithm to solve the problem starts with the
parameterization of the contour. Helmholtz’ equation for the
boundary value problem is solved respectively. By means of
Green’s functions, integral presentation of scattering field is
obtained. Substitution of this integral representation into the
boundary condition gives the relevant integral equation of first
kind in space L,. Then, the kernel is split into regular and
singular parts, and expands every part into its Fourier series,
obtaining finally an infinite algebraic system of the first kind.
Then, by means of double-sided regularizator algebraic system
of the first kind can be reduced to algebraic system of the
second kind. The final equation system can be solved with any
desired accuracy by truncation procedure [8].

Calculated results show that the presented method is
mathematically strong, numerically accurate, and efficient not
only for canonical shapes but also for non- canonical shapes of
waveguides [9]-[11].

B. Waveguide Evolutionary Equations

Solving the Dirichlet boundary-value problem is essential to
obtain the TM modal wave functions [12]. Wavenumbers are
used to investigate the propagation of the electromagnetic wave
along the waveguides. The details of evolutionary approach can
be found in [12], [13]. We will introduce two variables which
we scale by z and t.

¢ =knz (1
L= Wyt 2)

where k,,, and w,,, = k,,,c are the propagation parameters which
correspond to the cut-off wavenumber and cut-off frequency,
respectively. TM waves can be written as,

Hom = In (6, )Hip (1) 3)

Em = Vin (6, OEp (1) + £, (6, 0 Zy (1) 4)

where H,,(r), E,,(r) and Z,,(r) are the sets of modal basis
obtained from solution to Dirichlet boundary-value problem
[12]. The amplitudes f;,(¢,t), dependent on (g,¢) are
dimensionless quantities, and they should be found by solving
equation,

02 fm(6,0) + 290, fin(5,0) = 02 fin(5,0) + fin(5,0) =0 (5)

where g = y/w,, is loss parameter and y = ¢ /2¢,. The other
modal amplitudes are,

V(5,0 = 0cfrn (5, 1)
In(6,0 = =0,fn(5,0) — 290, fm (s, 0) (6)
Expected solution of f,,(¢,t) can be in the form of (7),
fmn(s0) = €79 (5,0 (N

where f,(g,0) is a new unknown function. Simple
manipulations with (5) and (7) result in canonical Klein-Gordon
Equation (KGE) as:

02 fn(6,0) = 02 (6.0 + 0*fin(5,) = 0 ®)
Vin(6,1) = €790 fr (5, 0) )
Im(c: )= _e—gt[alfm(g, D gaLfm(C’ l)] (10)

where n =./1—-g% >0, is the lossy parameter. The expected
solution to (8) is in form of,

fn(6,0) = Ay sin[@(g, 0)] (1n
d)(g, D)= (ot — Crm) + Om (12)
D(5,0) = D(6,0) — Py (13)

where [, = @? —1n?, @ = w/wy,, is dimensional frequency,
Y, = arcsin(g/{/@? + g?) is phase shift of loss, w is frequency
parameter, w,, = k¢, k,, is square root of an eigenvalue from
Dirichlet problem, c is the speed of light. A4,,, and ¢,, , are real-
valued free numerical parameters. Exact explicit solutions lead
us to have the energetic field properties in the time-domain [12].
The phase shift is ignored, and modal amplitudes are found as:

f7(6,0) = Ape~9"sin[o(g, 0] (14)
U = Apf@? — 2e 79" cos[(5, 0] (15)
1% = A @ + 126 cos[B(s, 0] (16)

Consequently, introducing a new energetic quantity yields:

Pn(s,0) = IR (s, ) V7 (5, 1) (17)
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Wi (5,0 = Wi (5,0 + Wi (5, 0) (18)
Wit (s, 0) = [I5 (5, 01%/2 (19)
Wi(s,0 = [ (5,017 + [ (5,012 /2 (20
Si7 (6,0 = 0.5U7% = V;7%) (21)

wii (5,0) = 0.5£7? (22)

P,, is power flow from waveguide contour, W, is energy
density, W2 and W, are electric and magnetic energy density
of the field. When the expected solutions (11) are applied to
(21) and (22), we have:

Su(s,0) = 0.542% e 29'cos?[D,, (g, )] (23)

Wi (s, 1) = 0.542, e~ 29sin2[®,,, (5, 1)] (24)

Fig. 1 Cassini Oval Contour (1) a=1.0 b=1.2

Fig. 2 Cassini Oval Contour (2) a=0.6 b=1.2

Fig. 3 Cassini Oval Contour (3) a=0.6 b=1.6

C.Arbitrary Shapes Used

The first object of our investigation has been the smooth-
contoured waveguides of non-canonical cross section. We
solved the ARM on shapes and formulae for them are taken
from [14]. Equation of the Cassini Oval is,

r* —2a’r? cos 20 — b* + a* = 0. (25)

IV. RESULTS
TABLEI
CONVERGENCE OF Ky VALUES OF CONTOUR (1)
Contour (a)

Kml1 Km2 Km3
2,051107206 3,075268329 3,4696085839
2,051206388 3,052618821 3,4676661616

16  2,051206585 3,052589354 3,4677625896
32 2,051206585 3,052589354 3,4677625897
42 2,051206585 3,052589354 3,4677625897

o K| Z

TABLE I
CONVERGENCE OF Ky VALUES OF CONTOUR (2)
Contour (b)
Km1 Km2 Km3

4 1,513912122  2,337541122  2,498500203
1,513898403  2,325088988  2,495522056
16 1,513898415  2,325079684 2,4955397
32 1,513898415  2,325079684 2,4955397
42 1,513898415  2,325079684 2,4955397

TABLE III
CONVERGENCE OF Ky VALUES OF CONTOUR (3)

Contour (c)
Kml Km?2 Km3
2,54517904  3,204832497  4,467979862
8  2,520086608  3,107437562 3951559388
16 2,519784987  3,105073113  3,941083358
32 2,51978494  3,105072588  3,941078545
42 2,51978494  3,105072588 3941078545

~|z

Calculation results of cut-off wavenumbers versus the
dimension of system N for each contour are shown in the tables
for fundamental mode respectively. The approximation of the
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results satisfies the reliability of analytical regularization
method.

The energetic waves are obtained by means of evolutionary
equations and illustrated graphically for lossy and lossless
media where lossy parameter is g = 0.07 and dimensionless
frequency @ = 1.3. Cut-off wavenumber of each contour is
used for the propagation of the TM-modal wave with its
amplitudes. Energy density w;, (¢, ¢) stored in the longitudinal
component of the electric field and difference of the energy
density S,,(¢, 1) stored in the transverse components of the
magnetic and electric fields are illustrated in Figs. 2, 4, and 6
for each cross section.

In Figs. 3, 5, and 7 the power and energy density of electric
and magnetic field P,(¢,t) and W, (¢,¢) stored in the
waveguide cross section, which completely satisfies the theory
of electromagnetic wave propagation, is simulated.

-
»
-~

05 ¢

rl
v
-

04

-

1) r

[ ]
[ 1
1 ]

[ 1

1 1

1 ]
' 1
1 1

—————

/ ]
I [}
[} 1
' 1]
i 1
) 1
1 ]
' ]
] ]
" [

03 -

01

-

-
-
-

=1
=
il e P
.
-

[

(¥

=
-
Y

0.5

¥

04

03

0.2

0l

0.0

(b)

Fig. 4 Cassini Oval Contour (1) Field energy S§7 (¢,¢) and energy
density w7 (¢, )with media, k,, = 2.05 (a) lossless (b) lossy
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Fig. 5 Cassini Oval Contour (1) P, (¢, t) and W, (g, t) for mediai

k., = 2.05 (a) lossless (b) lossy media.
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Fig. 6 Cassini Oval Contour (2) Field energy Si7 (¢, 1) and energy
density wij (¢, )with media, k,, = 1.54 (a) lossless (b) lossy
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Fig. 7 Cassini Oval Contour (2) P, (¢,t) and W, (¢, ¢) for media,
k., = 1.54 (a) lossless (b) lossy media
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Fig. 8 Cassini Oval Contour (3) Field energy Sy (¢, ) and energy
density w7 (¢, )with media, k,,, = 2.54 (a) lossless (b) lossy
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Fig. 9 Cassini Oval Contour (3) P, (¢,t) and W, (¢, ¢) for media,

k., = 2.54 (a) lossless (b) lossy media

V.CONCLUSION

Generally, difficulties arise due to the great complexity of
many non-canonical resonant obstacles and cavities. In this
paper, Cassini Oval is used as arbitrary shape. Each contour is
solved by using ARM. Results (cut-off wavenumber and cut-
off frequencies) are used to illustrate the energy densities of
waveguide contour by means of the time domain evolutionary
equations of waveguide electromagnetic theory.
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