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 
Abstract—Designing a controller for stochastic decentralized 

interconnected large scale systems usually involves a high degree of 
complexity and computation ability. Noise, observability, and 
controllability of all system states, connectivity, and channel 
bandwidth are other constraints to design procedures for distributed 
large scale systems. The quasi-steady state model investigated in this 
paper is a reduced order model of the original system using singular 
perturbation techniques. This paper results in an optimal control 
synthesis to design an observer based feedback controller by standard 
stochastic control theory techniques using Linear Quadratic Gaussian 
(LQG) approach and Kalman filter design with less complexity and 
computation requirements. Numerical example is given at the end to 
demonstrate the efficiency of the proposed method. 
 

Keywords—Decentralized, optimal control, output, singular 
perturb. 

I.INTRODUCTION 

OME systems’ setups involve large-scale and high-
dimension interconnected systems in such a way as to 

require huge channel bandwidth for controller communication, 
complex controller design, and expensive implementation. To 
overcome such limitation of interconnected large-scale 
systems, decentralized control setup can simplify controller 
design and reduce the order of the system, communication 
channel bandwidth, and implementation cost. The order of 
interconnected large-scale systems can be reduced using 
singular perturbation techniques by separating the slow and 
fast dynamics of the overall system behavior. This reduction 
can minimize the complexity of control algorithms and 
implementation cost [1]. Considerable research effort has been 
concentrated toward singular perturbation for long time and 
interested many researchers as a mathematical technique to 
simplify and reduce the order of large-scale control systems 
[2]–[11]. 

Interconnected subsystems are controlled separately and 
independently using decentralized control strategies.	Each 
subsystem can be controlled locally using its own states for 
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state feedback control. This makes controllers communicate 
locally within each subsystem individually. This technique 
assumes the availability of all states of each subsystem to the 
local controller, which is not always applicable in real world 
systems. Usually, state feedback control techniques are used to 
control and stabilize an unstable system. In the case when 
system states are not available, control can be implemented 
using output feedback by observing and estimating the states 
or by static output feedback. The unavailability of the states is 
not the only problem involved in using output feedback 
techniques; the noise in output measurement and disturbance 
to controller input can have a considerable effect on system 
performance and even lead to instability. Stochastic control 
techniques may be used to describe the system with 
uncertainties [12]–[14]. 

Decentralized control is widely used in the control of 
interconnected power systems, distribution networks, traffic 
systems, computer and communication networks, civil 
structure ݏ݉݁ݐݏݕݏ, ܽ݊݀	aerospace systems [7], [8], [15], [16]. 
Considerable research effort was made for decentralized 
control for large scale systems, [17] studied the stability of 
decentralized control of interconnected systems using adaptive 
control scheme. Stability analysis of networked systems was 
studied by [18] using observer based decentralized control 
scheme. Reference [16] discussed optimal control design for 
decentralized large scale systems using modified LQR control. 
Optimal stabilization for decentralized linear systems using 
output feedback control strategy was studied by [13]. Stability 
of decentralized singularly perturbed systems was discussed 
by [19] and a robust controller was designed using a unified 
approach. An output feedback control scheme for discrete time 
decentralized singularly perturbed systems was developed by 
[20] using an iteration method. 

The investigated model in this research of a large scale 
stochastic decentralized interconnected system was a reduced 
order quasi-steady state model of the original system using 
singular perturbation techniques. The minimization of 
conditions and constraints reaches a solution which applies 
Lyapunov equations coupled with constraints equations to 
optimize the performance index of the reduced-order model. A 
Kalman filter was designed to optimally estimate the states of 
the fast subsystems to be used in the observer based feedback 
controller design. Those observed states to be used in the 
reduced order model to generate several estimates of the main 
system’s states in controlling the overall system performance.  

II.PROBLEM STATEMENT 

	Consider the linear time-invariant decentralized singularly- 
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perturbed model in (1) representing the system shown in Fig. 
1: 

 
ሶݔ ൌ ݔ଴଴ܣ ൅ ଴ଵऊଵܣ ൅ 	଴ଶऊଶܣ

ऊሶଵߝ ൌ ݔଵ଴ܣ ൅ ଵଵऊଵܣ 	൅ ଵݑଵܤ ൅ ଵݓଵܩ
ऊሶଶߝ ൌ 	ݔଶ଴ܣ ൅ ଶଶऊଶܣ ൅ ଶݑଶܤ ൅ ଶݓଶܩ
ଵݕ ൌ ଵऊଵܥ ൅ ଵݒଵܪ
ଶݕ ൌ ଶऊଶܥ ൅ ଶݒଶܪ

							 (1) 

 
where ݔ ∈ ࣬௡, ऊଵ ∈ ࣬୫భ, and ऊଶ ∈ ࣬୫మ are the state variables 
of the slow main system and fast subsystems ऊଵ and ऊଶ 
respectively. Inputs ݑ௜ ∈ ࣬௥೔ are the control input vectors, and 
outputs ݕ௜ ∈ ࣬௣೔ are the control output vectors of subsystems i 
respectively for i=1,2. ݓ௜ and ݒ௜ are the input disturbance and 
output measurement noise , ܩ௜ and ܪ௜ are constant scaling 
matrices corresponds to noise for subsystem i for i=1,2. 

,଴଴ܣ ,଴ଵܣ ,଴ଶܣ ,ଵ଴ܣ ,ଵଵܣ ,଴ଶܣ ,ଶ଴ܣ ,଴ଵܣ ,ଶଶܣ ,ଵܤ	 ,ଶܤ  ଶܥ	and	ଵܥ
are constant matrices with appropriate matching dimensions 
and it is assumed that the singular perturbation parameter ߝ ≪
1 is a small positive number. 

The objective of this research is to develop a stabilizing, 
robust and optimal control of reduced-order output feedback 
controller. This controller should be able to stabilize a linear 
time-invariant stochastic singularly-perturbed system via 
decentralized control. Besides states unavailability, the lack of 
direct control to the main system is a major issue in the 
problem formulated in (1). The criteria to be analyzed is a 
standard LQG performance index. The proposed technique 
will use singular perturbation approach to reduce the order of 
the original model to be applicable to large-scale systems. 
 

 

 

Fig. 1 Decentralized system setup with two subsystems 
 

III.MAIN RESULTS 

In singular perturbation, when ߝ approaches zero, we 
assume that the fast subsystems state variables, ऊଵ	and	ऊଶ 
have reached quasi-steady state. Hence, the system order is 
reduced to the order of the main system, which is equal to the 
dimension of the slow state variable x. ܹ݄݁݊	ߝ → 0, ऊሶߝ	݄݊݁ݐ ൌ
0,	which means that only the slow part dynamics affect the 
system. Now, let ̅ݔ, ऊ̅	and	ݑത to represent the quasi-steady state 
variables of the system. The slow variables of the system can 
be set as: ௦ݔ ൌ ,ݔ̅ ௦ݑ ൌ ௦ݕ	and	തݑ ൌ  :ത. Then (1) reduces toݕ

 
ሶݔ̅ ൌ ݔ଴଴̅ܣ ൅ ∑ ଴௜ऊ̅௜௜ܣ 	
0 ൌ ݔ௜଴̅ܣ ൅ ௜௜ऊ̅௜ܣ ൅ ത௜ݑ௜ܤ ൅ ௜ݓ௜ܩ
ത௜ݕ ൌ ௜ऊ̅௜ܥ ൅ ௜ݒ௜ܪ

 ;   i = 1,2      (2) 

 
By solving the second ݁݊݋݅ݐܽݑݍ	݂݋	the system (2) for ऊ̅௜ 

we get: 
 

ऊ̅௜ ൌ െܣ௜௜
ିଵሺܣ௜଴̅ݔ ൅ ത௜ݑ௜ܤ ൅ ;௜ሻݓ௜ܩ 			݅ ൌ 1,2              (3) 

 
where ܣ௜௜ are nonെݎ݈ܽݑ݃݊݅ݏ.	 By plugging ऊ̅௜	from (3) in the 
first and third equations of (2) we get the reduced order 
system: 
 

ሶݔ̅ ൌ ݔ଴̅ܣ ൅ ത௜ݑ෨௜ܤൣ∑ ൅ ௜൧ݓ෨௜ܩ

ത௜ݕ ൌ ݔሚ௜̅ܥ ൅ ത௜ݑ෩௜ܦ	 ൅ ௜ݓ෨௜ܩ ൅ ;	௜ݒ௜ܪ 			݅ ൌ 1,2
										(4) 

 
where, 

଴ܣ ൌ ଴଴ܣ െ ଵଵܣ଴ଵܣ
ିଵܣଵ଴ െ ଶଶܣ଴ଶܣ

ିଵܣଶ଴ 
෩௜ܤ	 ൌ െܣ଴௜ܣ௜௜

ିଵܤ௜               ܥሚ௜ ൌ െܥ௜ܣ௜௜
ିଵܣ௜଴ 

෩௜ܦ ൌ െܥ௜ܣ௜௜
ିଵܤ௜                                (5) 

෨௜ܩ ൌ െܣ଴ଵܣଵଵ
ିଵܩଵ      and   	ܩ෨෨௜ ൌ െܥ௜ܣ௜௜

ିଵܩ௜ 
 

The performance index of subsystem 	i is given by:  
 

௜ܬ ൌ
ଵ

ଶ
׬ ൫்̅ܳݔ௫̅ݔ ൅ ऊ̅௜

்ܳऊ௜ऊ̅௜ ൅ ത௜ݑ
்ܴ௜ݑത௜൯݀ݐ

ஶ
଴        (6) 

 
where: ܳ௫ ,ܳऊ೔ are positive semi definite 	symmetric matrices 
and ܴ௜ is a positive definite symmetric matrix. By substituting 
the values of ऊ̅௜ (3) we get the reduced performance index as: 

 

௜ܬ  ൌ
ଵ

ଶ
׬ ൛்̅ݔ തܳ̅ݔ ൅ ത௜ݑഥ௜ܯ்ݔ2̅ ൅ ത௜ݑ

் തܴ௜ݑത௜ൟ݀ݐ
ஶ
଴ ൅  ௪  (7)ܬ

 
where  ܬ௪, is a term contains the integral of the variance of the 
noise which is not affected by control [21], and 

 
തܳ ൌ ܳ௫ ൅ ௜଴ܣ

் ௜௜ܣ
ି்ܳऊ௜ܣ௜௜

ିଵܣ௜଴ 
ഥ௜ܯ ൌ ௜ܤ

௜௜ܣ்
ି்ܳऊ௜ܣ௜௜

ିଵܣ௜଴                              (8) 
തܴ௜ ൌ ܴ௜ ൅ ௜ܤ

௜௜ܣ்
ି்ܳऊ௜ܣ௜௜

ିଵܤ௜ 
 

The feedback input for subsystem i is chosen to be:  
 

ത௜ݑ  ൌ ݔത௜̅ܨ ൌ െ തܴ௜
ିଵܯഥ௜

 (9)                           ݔ்̅
 

To get rid of the cross product term in (7) we set ݑത௜ ൌ ത଴௜ݑ ൅
 :and the performance index (7) will reduce to ݔത଴௜̅ܨ

 

௜ܬ  ൌ
ଵ

ଶ
׬ ൛்̅ݔ തܳ଴௜̅ݔ ൅ ത଴௜ݑ

் തܴ௜ݑത଴௜ൟ݀ݐ
ஶ
଴                 (10) 
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where, 
 

തܳ଴௜ ൌ തܳ െ ഥ଴௜ܯ തܴ௜
ିଵܯഥ଴௜

் ,   and    ܣ଴௖ ൌ ଴ܣ െ ෨௜ܴ௜ܤ
ିଵܯഥ௜

்    (11) 
 

and the optimal control input of the system will take the form: 
 

଴௜ݑ
∗ ൌ െܴ௜

ିଵ൫ܯഥ௜
் ൅ ෨௜ܤ

ݔ൯̅ܭ் ൌ െܨ௜
 (12)                  ݔ̅∗

 
and ܭ is the solution of the Riccati equation 

 
 0 ൌ ଴௖ܣܭ ൅ ଴௖ܣ

் ܭ െ ෨௜ܤܭ തܴ௜
ିଵܤ෨௜

ܭ் ൅ തܳ଴௜           (13) 
 

The optimal cost for subsystem i will be: 
 

௜ܬ  ൌ
ଵ

ଶ
ሽߑܭሼݎݐ ൅

ଵ

ଶ
ܨሼܲݎݐ ௜்ܹܨሽ                      (14) 

 
where ௜ܹ is the intensity of ݓ௜, ߑ ൌ ଴ݔ଴ݔሼܧ

்ሽ and ܲ is the 
solution of the Lyapunov equation 

 
 0 ൌ ଴௖ܣܲ ൅ ଴௖ܣ

் ܲ ൅ തܳ଴௜                             (15) 
 

When the system reaches quasi-steady state, the reduced 
system state xത will be presented as the slow dynamics state ݔ௦. 
For the system (4), where there is no access to the main state 
 ௦, instead we can use an estimate of the state variable usingݔ
Kalman filter. Because of the decentralized nature of the 
system setup, we will not be able to use the same estimate of 
the state variable ݔ௦ for both subsystems. Hence, there will be 
two estimates for the main system states ݔ௦ using two 
observers (Kalman filters) connected to each subsystem. The 
observed system: 

 
ොሶ௜ݔ
௦ ൌ ො௜ݔ଴ܣ

௦ ൅ ଵݑ଴ଵܤ
௦ ൅ ଶݑ଴ଶܤ

௦ ൅ ௜ݕሺܮ
௦ െ ො௜ݕ

௦ሻݕො௜
௦ ൌ ො௜ݔሚ௜ܥ

௦ ൅ ௜ݑ෩௜ܦ
௦(16) 

 
where ݔො௜

௦ is the estimate of the quasi-steady state variable of 
the main system ܺ through the Kalman filter connected to 
subsystem i ; ݅ ൌ 1,2. The error between ݔො௜

௦ and the actual ݔ௦ 
is then calculated: 

 
 ሶ݁௜ ൌ ሶݔ ௦ െ ොሶ௜ݔ

௦ ൌ ௖݁௜ܣ ൅ ଴ݓ െ  ௜                    (17)ݒܮ
 

where; ሶ݁௜ is the ݁ݎ݋ݎݎ	݂݋	݄݁ݐ	݀݁ݐܽ݉݅ݐݏ݁	state ݔ using 
Kalman filter connected to subsystem I, and 
 

଴ݓ  ൌ ଵݓ଴ଵܩ ൅  ଶ                          (18)ݓ଴ଶܩ
 

The error ݁ܿ݊ܽ݅ݎܽݒ is defined as: 
 

ܲ ൌ ൛݁௜݁௜ܧ
்ൟ                               (19) 

then 
           ሶܲ ൌ ௖ܲܣ ൅ ௖்ܣܲ ൅ ଴ܹ െ ܮ ௜ܸ(20)                  ்ܮ 

 
where, ଴ܹ and ௜ܸ 	are intensities of ݓ଴ and ݒ௜ respectively. For 
this well-known Lyapunov Equation, minimization is achieved 
by choosing: 

 
ܮ  ൌ ்ܥܭ ௜ܸ

ିଵ                                 (21) 
 

where K is the 	solution of the Riccati Equation: 
 

ሶܭ  ൌ ܭ௖ܣ ൅ ௖்ܣܭ ൅ ଴ܹ െ ்ܥܭ ௜ܸ
ିଵ(22)           ܭܥ 

 
with ܭሺ0ሻ ൌ  ߑ

IV.NUMERICAL EXAMPLE 

Consider the fo݈݈݃݊݅ݓ݋	decentralized singularly perturbed 
system: 

 

ሶݔ ൌ ቂെ2 0
0 െ3

ቃ ݔ ൅ ቂ 1 െ1
െ1 െ2

ቃ ଵݖ ൅ ቂെ3 2
െ4 െ1

ቃ  ଶݖ

ሶଵݖߝ ൌ ቂെ1 2
െ4 3

ቃ ݔ ൅ ቂെ5 4
െ3 െ1

ቃ ଵݖ ൅ ቂ1
2
ቃ ଵݑ ൅ ቂ0.1

0.1
ቃݓଵ 

ሶଶݖߝ ൌ ቂെ1 5
െ3 2

ቃ ݔ ൅ ቂെ2 െ1
െ2 െ3

ቃ ଶݖ ൅ ቂ1
2
ቃ ଶݑ ൅ ቂ0.1

0.1
ቃݓଶ 

ଶݕ ൌ ሾ1 0ሿݖଶ ൅  ଶݒ
ଵݕ ൌ ሾ0 1ሿݖଵ ൅  ଵݒ

 
with ߝ ൌ 0.1 and only ݖଵ the optimal full order model feedback 
gain found to be: 

 
∗ܨ ൌ ሾെ0.16 െ0.27 0.04 0.46 െ0.04 0.05ሿ, 

 
with 

ሺ0ሻܭ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
			0.41 െ0.12 0.02 െ0.02 െ0.05 			0.02
െ0.12 			0.46 0 െ0.01 			0.05 െ0.05
			0.02 0 0.01 0 0 0
െ0.02 െ0.01 0 			0.03 0 0
െ0.05 			0.05 0 0 			0.04 െ0.02
				0.02 െ0.05 0 0 			0.02 ے0.03			

ۑ
ۑ
ۑ
ۑ
ې

 

 
and the close loop poles are: 

 

	

ۏ
ێ
ێ
ێ
ێ
ۍ
െ33.68
െ33.68
െ34.99
െ11.08
െ5.6
െ5.6 ے

ۑ
ۑ
ۑ
ۑ
ې

 

 
with ଵܹ ൌ ଶܹ ൌ 0.1,	full order system optimal cost is: 0.3150. 
The reduced order Model: 
 

ሶ௦ݔ ൌ ቂെ4 െ12.46
4 െ16.38

ቃ ௦ݔ ൅ ቂ 0.12
െ1.35

ቃ ௦ଵݑ ൅ ቂ 0.02
െ0.05

ቃݓଵ 

௦ݕ ൌ ሾെ1 0.53ሿݔ௦ଵ ൅ ௦ଵݑ	0.41 ൅ ଵݓ0.01 ൅  ଵݒ
 
The optimal feedback gain for this reduced order model is: 

∗ܨ ൌ ሾ0.5 െ0.29ሿ. By applying this optimal feedback gain to 
the full order model, the closed loop system optimal cost is: 
0.3204. with the following matrix: 

 

ሺ0ሻܭ ൌ

ۏ
ێ
ێ
ێ
ۍ
െ0.12 			0.48 0 െ0.02 			0.05 െ0.05
			0.02 0 			0.01 െ0.01 0 0
െ0.02 െ0.02 െ0.01 			0.03 0 0
െ0.05 			0.05 0 0 			0.04 െ0.02
			0.02 െ0.05 0 0 െ0.02 ے0.03			

ۑ
ۑ
ۑ
ې

 

 
The response of the output and states of the system are 

shown in Figs. 2 and 3. For subsystem 2, the optimal cost 
found to be: 0.341 and reduced optimal cost: 0.328. 

The optimal cost of the reduced order model is very close to 
that of the full order system within the order of (ߝଶሻ. 
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Fig. 2 State response for full and reduced order Models 
 

 

Fig. 3 Output response for full and reduced order Models 

V.CONCLUSION 

In this paper, the singularly perturbed decentralized system 
was found to have an optimal control with optimum feedback 
gain satisfying the Riccati equation in the quasi-steady state 
model. When the system is exposed to either a measurement 
noise, input disturbance or both, a solution exists using LQG 
approach and Kalman filter with certain assumptions in 
addition to basic knowledge of the white noise distribution. 
The numerical example has shown excellent results that the 
proposed method has succeeded in decreasing the 
computational workspace and the quadratic convergence has 
been attained. The new technique in this research will help to 
simplify system analysis and controller design and can be 
expanded for multi-subsystems. 
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