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Solving the Nonlinear Heat Conduction in a
Spherical Coordinate with Electrical Simulation

A. M. Gheitaghy, H. Saffari, G. Q. Zhang

Abstract—Numerical approach based on the electrical simulation
method is proposed to solve a nonlinear transient heat conduction
problem with nonlinear boundary for a spherical body. This problem
represents a strong nonlinearity in both the governing equation for
temperature dependent thermal property and the boundary condition
for combined convective and radiative cooling. By analysing the
equivalent electrical model using the electrical circuit simulation
program HSPICE, transient temperature and heat flux distributions at
sphere can be obtained easily and fast. The solutions clearly illustrate
the effect of the radiation-conduction parameter Nic, the Biot number
and the linear coefficient of temperature dependent conductivity and
heat capacity. On comparing the results with corresponding
numerical solutions, the accuracy and efficiency of this
computational method is found to be good.

Keywords—Convective boundary, radiative boundary, electrical
simulation method, nonlinear heat conduction, spherical coordinate.

I. INTRODUCTION

HE cooling or heating of a solid by a combination of

thermal radiation and free or forced convection has
received little attention in the literature. Interactions of
radiation with convection become important in various high-
temperature applications such as combustion (fires, furnaces
and rocket nozzles), nuclear reactions (solar emission, nuclear
weapons), ablating material to protect from high external
temperatures, aerodynamic heating of spaceships and
satellites, glass manufacturing, solid oxide fuel cells and solar
energy collectors [1]. Furthermore, if there is a wide
temperature difference within a medium, the assumption of
constant thermal property is not appropriate. This variation in
thermal property becomes important in the case of most
nonmetallic materials subjected to intermediate or high
temperature differences.

An ecarlier transient analysis for the radiative cooling of a
sphere of a high-temperature gas was performed by Viskanta
and Lall [2]. The gas was grey, without scattering, and heat
conduction was not included. Viskanta and Merriam [3]
investigated heat transfer by combined conduction and
radiation between concentric spheres separated by radiating
medium. Bayazitoglu and Suryanarayana [4] considered
transient heat transfer in an opaque sphere surrounded by a
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translucent concentric spherical layer. The internal sphere was
opaque, and heat transfer within it occurred only by
conduction. The temperatures were obtained numerically with
an explicit finite difference method. Tsai and Ozisik [5]
studied the interaction of transient, combined conduction and
radiation in an isotropically scattering, homogeneous solid
sphere. Thynell [6] used the Galerkin method to consider a
steady-state heat transfer by simultaneous conduction and
radiation in a linearly anisotropic, homogeneous solid sphere.
Trabelsi et al. [7] extended the Galerkin method to study the
combined conduction and radiation heat transfer between two
concentric spheres separated by a participating isotropically
scattering medium.

Haji-Sheikh and Sparrow [8] used the Monte Carlo
technique to obtain solutions for a plate subjected to
simultaneous boundary convection and radiation. Davies
discussed the cooling of a plate by thermal radiation using the
heat balance integral technique [9]. Parang et al. [10] studied
the problem of inward solidification of a liquid in cylindrical
and spherical geometries due to combined convective and
radiative cooling by the regular perturbation method. Sunden
[11] presented numerical solutions based on the finite
difference method of the thermal response of a composite slab
subjected to a time-varying incident heat flux on one side and
combined convective and radiative cooling on the other side.
Kessler [12] analyzed multishell spherical systems which are
heated in their inner part and under convection and radiation
in their outer part. Different geometrical thickness of the
spherical shells and temperature dependent thermal material
properties were assumed. Su [13] investigated the transient
radiative cooling of a spherical body by using improved
lumped models. Here, the distributed model of a spherical
body is considered. Homotopy analysis method was presented
to treat such complicated nonlinearity [14], [15]. This method
does not depend on the existence of small or large parameters
in the studied problem such as the perturbation methods and
Adomian decomposition method. In their work, the constant
heat capacity per volume was assumed, but here it’s the linear
dependent to temperature is assumed to investigate the effect
of it.

In this paper, an approach called the network simulation
method, according to electrical analogy is proposed as a
means of solving the heat conduction problem. Electrical
analogy has been used for the first time by Paschkis to solve
the unsteady-state and unidirectional heat conduction equation
in a plate [16]. Ever since, equivalent electrical models, so-
called thermal networks, seem a relatively simple, but
sufficiently accurate and powerful tool for simulating real
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thermal systems. Aim of this work is introducing this method
to spherical coordinate and also, for solving the equivalent
circuit the HSPICE program is proposed. For demonstration
the reliability and robustness of this method, a solid sphere
with  temperature dependent thermal property under
convective and radiative boundary condition is investigated
and results are verified with reference [14]. This problem has a
strong nonlinearity in both governing equation and boundary
condition, and so encounters difficulties in obtaining exact
solution.

I[I. MATHEMATICAL FORMULATION

Let us consider a spherical body of radius 7,, initially at a
uniform temperature T,. Att =0, the spherical body is
suddenly exposed to an environment of a constant fluid
temperature Ty and a constant radiation sink temperature T;. It
is assumed that the spherical body is homogeneous, isotropic
and opaque. Thermal conductivity k and heat capacity pc, are
assumed linear function of temperature.

The mathematical formulation of the problem is given by

aT 1
pep(1) 5 = r_ZE[ 20(T) ] inr<r, (1

with initial and boundary conditions taken as

T =To (2a)
aT,
D) T < (1, 0~ 1)+ £0(T 0~ 1) (2b)
Mon _ 20)
ar

where T denotes the temperature, t the time, r the spatial
coordinate, h the convective heat transfer coefficient, € the
surface emissivity, and ¢ the Stefan-Boltzmann constant,
respectively.

Introducing the concept of the adiabatic surface temperature
T, by

hT; + eoT,* = hT, + eoT,* 3)

Combining (3) with (2b), the corresponding boundary
condition can be rewritten as

aT(To D)

—k(T) =22 = (T, ) = Ta) + €0 (T, 0" = Ta'*) “

Also, using the dimensionless parameters

T r _ qro . hr,
0= gy =P = B
ezerT ko k PCy ®)

= a

»Nrc

) = A=Y=
ko 0 Py, ko Py,

in which k, is a reference thermal conductivity, PCp, is a
reference heat capacity per unit volume and « is a reference
thermal diffusivity. Without loss of generality, we consider the
case in which the thermal conductivity and heat capacity per

unit volume vary linearly with the temperature, given by

k = ko(1+bT),pc, = pcpo(l +eT) 6)
The dimensionless form of thermal property can be written
as

eT,

AO) =1+ p0, y(S)—1+§8Whereﬁ—— = (7

The above mathematical formulations can now be rewritten
in dimensionless form as

1

(1+$)6F0 261;

(+ oS (8)

subject to the initial and boundary conditions

8(n,0) = 1 (%9a)
—(1 + po) —:ro) “F‘” = Bi(0(1r0) — 0a) + Nee(Brpoy* — 05)  (9D)
06(0,Fo) _

It can be seen that the problem is governed by five
dimensionless parameters,f,, 5, §, Bi and N,... The radiation—
conduction parameter, N,.., is conceptually analog to the Biot
number, Bi, which is the governing parameter for convective
cooling.

III. ELECTRICAL NETWORK SIMULATION METHOD

The analogy existing between electrical and thermal
quantities is well known. The variables heat flux (g) and
temperature (7) are equivalent to the variables electric current
(1) and voltage (V) in this analogy. The network simulation
method according to this analogy is a numerical technique
whose accuracy, efficiency and reliability have already been
proven in modeling differential equations specially heat
transfer equations in Cartesian coordinate [17]-[19]. Numbers
of networks are connected in series to make up the whole
medium and boundary conditions are added by special
electrical devices.

Divide the physical domain 0 < r <1, into a finite number
of cells with thickness Ar;, creating sort of a computational

domain. An energy balance in a typical cell, i=1,2,3, ..., n
may be expressed as

aT;
qQi-n = (PVCp)id—tl + Gita (10)

where q;_p and q;,, signify the respective heat flux densities
entering and leaving cell 7, as indicated in Fig. 1 and v; is a
volume of cell i. Equation (10) may be interpreted as
Kirchhoff’s current law (implying energy conservation),
where the temperature, 7, is a continuous single-valued
dependent variable that satisfies Kirchhoff’s voltage law and
the heat, ¢, is analogous with current. At this point, each term
of (10) is conveniently redefined by way of an electric current.
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This operation leads to

av;

L 11
o an

li_p =lijc+ I pwherel; . =

By considering the equivalent electric network between
nodes as ‘T’ form, RC trees are RC circuits with capacitors
from all nodes to ground, no floating capacitors, no resistor
loops, and no resistors to ground. According to similarity
between (10) and (11), I;.is an entrance current to the
capacitor branch with capacitance

4
Ci = §7T(Ti+A3 =122 * (pcy) (12)

For finding the resistance on each branch, structural Fourier
equation in spherical coordinates is used as

q(r,t) = —k(T) * 4mtr? « VT (r, t) (13)

With integrating to (13) ini — A to i

Qs (70 dr Ti
i f =k | ar (14)
i-A i—A

And considering constant entrance heat flux q;_, in this
domain and dependency of k to T;, we have

1 (L_l>:7Ti‘A_Ti (15)
ank(T) \ri_a 7 Qi-a

In this equation, T;_, and T;denote the respective
temperatures at the left extreme and at the centre of cell i.
According to similarity between (15) and Ohm’s law,
resistance in entrance branch can be obtained as

R = liTTi-a (16)
AT Ak (T) * 1y % 1i-a

By repetition of this process for output branch, the
resistance on another branch can be obtained as

Tiva — T
R: =
P T Ak (Ty) * 1y % Tiga an

It can be concluded that the resistance of a spherical shell is
proportional to the difference of the inverse of the inside and
outside radii; and the capacitance is proportional to the
difference of the third powers of the radii limiting the shell.
Accordingly, the interconnection between the two resistors
R;_, and R, and the capacitor C; is illustrated in the electric
circuit of Fig. 1. The generalization of these elements
produces n cells, which are connected in series to form the
complete network model.

For the completion of the electric network model, the final
requirement is pertinent to incorporation of the initial and
boundary conditions. The initial condition is easily adjusted by

charging the capacitors to the initial temperature. Resistor of
infinite value, R;,¢(an open circuit), is connected to the center
node of sphere to cope with the symmetry boundary condition.
A voltage source with magnitude of 6, connected at variable
resistance Ry to handle the dominant convective and radiation
boundary condition. The magnitude of Ry is define with
equation:

1
- 18
Bi + Nrc(Vn+A + ea)(Vn+A2 + 0112) ( )

Rrad+conv =

where V,,,, is a voltage of surface node.

Once the electric network model has been set up, the
numerical treatment of the analog electric circuit can be easily
done with the computer code HSPICE. This program is a
member of the SPICE family which can calculate the behavior
of analog circuits with relatively high speed and accuracy.
This program uses the modified nodal analysis, as the equation
formulation method, and Gaussian elimination with associated
LU factorization for the solution of linear systems. This
program also uses the Newton-Raphson algorithm as a
nonlinear equation solution method, and the simple-limiting
method of Colon as a limiting algorithm [20].

IV. RESULTS AND DISCUSSION

Electrical simulation method has several advantages over
the numerical techniques. This method relies on discrete
spatial intervals and real continuous time. Hence, the
discretization error is quantified by the spatial interval Ax
exclusively without the intervention of the time interval At;
thus, can be easily controlled and does not require
convergence criteria. Also, all types of linear and nonlinear
boundary conditions imposed on the linear or nonlinear heat
equation may be treated easily and in a few seconds run time.
An unparalleled advantage is its suitability to composite plane
walls, because the boundary conditions of temperature
continuity and heat flux continuity across the material
interfaces are satisfied in an electric sense. Heat flows across
any section and both spatial and temporal distributions of
temperature  are  obtained  simultaneously,  without
mathematical complexities in a really low run time of HSPICE
program. This electrical model is constructed based upon
central finite difference spatial discretion of the heat flow
equation.

The temperature field 6(n, Fo) and the heat flux density
field Q(n,Fo) in a body sphere have been accurately
determined by the code HSPICE. To facilitate the numerical
computations, we assigned values of one to T; =7, = a,.
Certainly, a sensitivity analysis of the number of cells forming
the computational domain is a mandatory step in numerical
calculus. Our analyses were carried out by taking 100
compartments, enough to ensure good accuracy and low CPU
times (typically, less than 3seconds, on an IBM ThinkPad,
Pentium 4, 1.66 GHz, 1GB RAM).
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Fig. 1 Electrical network elements for solid sphere with radiation and convection boundary condition
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Fig. 2 Comparison of the NSM results with analytic approximation

with 8 = 1,§ = 0,N,. = .25,0, = .5,Bi = .5 at the dimensionless time

Fo = 0.05,0.1,0.2,0.35,0.5, 1. Solid line: NSM results; open circle:
analytic approximation

Figs. 2 and 3 investigates the electrical network solution for
the spatial variation of dimensionless temperature and heat
flux at different dimensionless time Fo, for the parametric
values § =1, ¢ =0, N,.=0.25, 6, =0.5, Bi =0.5. Results
from Fig. 2 shows that the electrical network solutions have a
good agreement with the solution of 30th order Homotopy
solution that shows with the open circle. By increasing in
time, the temperature reach to ambient temperature and the
variation of temperature and therefore the heat flux in Fig. 3
are decreased.

Fig. 4 describes the temporal variations in the temperature
on the surface of the spherical body for different values of the
Biot number Bi=0.5, 1, 2 and the values 8 =1, ¢ =0, N,. =0,
6, =0. This case agrees with the approximate solution for the
dimensionless time. This figure shows that the temperature
decreases as the Biot number enlarges, and also, decays more
quickly for large values of the Biot number.
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Fig. 3 Spatial variation in the heat flux with § = 1,§ = 0, N, =0.25,
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Fig. 4 Comparison between NSM result and analytic approximation
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Fig.

boundary for different values of Bi when=1,£=0,N,. =
0,0, =0

5 describes the temporal variations in the temperature
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on the surface of the spherical body, at the boundary n =1 for
different values of the radiation-conduction parameter
(Ny. =0, 025, 0.5, 1, 2) and the valuef =1, Bi =0.5,
6, =0.5. It also indicates that the temperature on the surface
decays more quickly for larger value of the radiation—
conduction parameter N...
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Fig. 5 Temporal variation in temperature on the surface of spherical
body for different radiation conduction parameter N, = 0.25,0.5,1,2
withp=1,£=0,Bi = 05,0, = 0.5

Fig. 6 views the spatial variations in the temperature of the
spherical body without radiation (N,.. = 0) through different
values of dimensionless times with g =1, & =0, 6, =0,
Bi =1. All of these results verify the validity of the electrical
simulation method for the unsteady nonlinear heat transfer
problems.

Figs. 7 and 8 show the effect of variable heat capacity with
the linear coefficients € =0, 0.5, 1, 2 on temporal temperature
and heat flux profile on the surface of spherical body,
respectively. By increasing coefficient of heat capacity, the
temperature and heat flux is increased.
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Fig. 6 Temperature comparison between NSM result and analytic
approximation withf = 1, = 0,N.. = 0,0, = 0,Bi = 1 at the
dimensionless time Fo = 0.05,0.1,0.2,0.35,0.5, 1. Solid line: NSM
results; open circle: analytic approximation
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Fig. 7 Temporal variation in temperature on the surface of spherical
body for different heat capacity linear coefficient £ = 0,0.5,1, 2
withp=0,Bi=1,N, =10, =0
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Fig. 8 Temporal variation in heat flux on the surface of spherical
body for different heat capacity linear coefficient £ = 0,0.5,1, 2
withp=0,Bi=1,N,=1,6,=0

V.CONCLUSION

This paper treated the application of the electrical
simulation method for a spherical body with variable thermal
properties under the combined convective and radiative
cooling. All the conditions of the problem make it highly non-
linear. This numerical approach based on the analogy between
electrical circuit and heat transfer gives us a tool to solving
unsteady nonlinear heat transfer problems in spherical
coordinate. Following the steps of the network simulation, a
network model has been designed, which runs numerically
with appropriate circuit simulation software to give the
transient responses. The treatment proved the ability and
flexibility of this method to handle such kinds of problems for
different bases. The obtained solutions give accurate spatial
and temporal variations in the temperature, which indicate that
the temperature on the surface of the body decays rapidly for
large values of the Biot number, Bi and the radiation-
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conduction parameter, Ny... Moreover, by increasing the linear
coefficient of heat capacity the temperature and heat flux
increased. Adversely, by increasing the linear coefficient of
conductivity the temperature and heat flux decreased.
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