International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

Coloured Petri Nets Model for Web Architectures of
Web and Database Servers

Nidhi Gaur, Padmaja Joshi, Vijay Jain, Rajeev Srivastava

Abstract—Web application architecture is important to achieve
the desired performance for the application. Performance analysis
studies are conducted to evaluate existing or planned systems. Web
applications are used by hundreds of thousands of users
simultaneously, which sometimes increases the risk of server failure
in real time operations. We use Coloured Petri Net (CPN), a very
powerful tool for modelling dynamic behaviour of a web application
system. CPNs extend the vocabulary of ordinary Petri nets and add
features that make them suitable for modelling large systems. The
major focus of this work is on server side of web applications. The
presented work focuses on modelling restructuring aspects, with
major focus on concurrency and architecture, using CPN. It also
focuses on bringing out the appropriate architecture for web and
database servers given the number of concurrent users.

Keywords—Coloured petri nets, concurrent users, performance
modelling, web application architecture.

I. INTRODUCTION

EB application’s performance plays a vital role in its

usability. However, predicting performance before
application’s deployment poses a big challenge. A modelling
approach is being considered to predict the performance
impact on an application before its actual deployment in the
production environment. Performance modelling provides
future insight for application architecture requirements to
achieve desired performance. It helps to infer scalability issues
beforehand that may occur post deployment. Performance
modelling works as a tool to guide application design, system
design and thereby helps in understanding the overall
application performance. Performance for client-server
architecture based web application depends mainly upon the
client and server design, its architecture, and network
bandwidth. The focus of this paper is on modelling
infrastructure architecture at server end to achieve the desired
performance for client-server based web applications.

Web applications are event based and Petri Nets are one of
the mathematical tools that are used to model the event based
system. Hence, Petri Nets are chosen to model the web
application performance in this work. The focus of this work
is to model the database and web/application server for three
tier client server architecture.

Web server architecture is a function of number of
concurrent users accessing the application, total load on

Nidhi Gaur is with the Sardar Patel Institute of Technology, Andheri,
Mumbai, India (e-mail: nidhigaur@sfitengg.org)

Padmaja Joshi, Vijay Jain, and Rajeev Srivastava are with the Centre of
Development and Computing, Gulmohar Cross Road No. 9, Juhu, Mumbai (e-
mail: padmaja@ cdac.in, vijayj@cdac.in, rajeevs@cdac.in).

application and the peak load. Use of load balancer, total
number of required servers and their architecture is dependent
upon all these parameters. The model brings out this aspect
and suggests architecture to be used with given number of
concurrent users. In the case of database, the architecture
varies depending upon the choice of database, type of SQL
queries and number of concurrent users with similar type of
SQL queries.

The focus of our work is to analyze the server deployment
strategy with increasing number of concurrent users. The
model will also help in predicting the load a server can handle
as well as the number of servers or VMs required with
increasing number of concurrent accesses. We have
considered VM’s but not the cloud environment.

The aim of the work is to develop a model which will
represent performance aspects of a web application more
precisely effect of concurrent users, and will also provide an
insight for required restructuring of architecture to achieve the
desired performance. The presented work focuses on
modelling restructuring aspects using CPN, with major focus
on concurrency and architecture. It also brings out the
appropriate deployment architecture for web and database
server with given number of concurrent users. The presented
model should be easy to use even for those having no
background of Petri-Nets. Using the suggested model,
developers will be able to predict the application performance
without even deploying the complete application on
production environment.

The paper is organized as follows. Section II covers the
work done by researchers in the area of web architecture
modelling. It also covers the background of web architecture
and petri-nets, and the reasoning of selecting CPNs for
modelling. Section III describes the presented Petri net model
for web and database server architecture. It also provides the
simulations of these models. The presented models are
analysed using different Petri net analysis techniques. The
Section IV covers the analysis of the performance model. The
paper is concluded with Section V on conclusion and future
work.

II. LITERATURE REVIEW

A. Web Application Overview

Web application performance is discussed extensively in the
literature and different approaches followed to model it. In
recent years, researchers have done a lot of work on modelling
web application for performance related issues. Web server
and database server are crucial components in the performance
of overall web application architecture. The performance and

2049

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

scalability issues related to these components are also
discussed in the literature using different approaches. Some of
these are summarized here.

Beltran and Ayguade [1] discussed about improving web
server performance using main memory compression. They
implemented on the Linux OS a main memory compression
system that takes advantage of the full power of current
multiprocessors architectures, evaluated its performance with
a highly-threaded web server and obtained positive results
such as a 30% throughput improvement and a 70% reduction
in the disk bandwidth usage. Mahnaz Shams and Far [2] used
the model based approach for testing the performance of web
application. The fine-grained control of workload
characteristics are supported by this approach. The approach is
beneficial to create controlled workloads and to study impact
of varying workload characterstics on system performance.
The methodology relies on Extended Finite State Machines
(EFSMs). EFSMs can model applications with higher order
request dependencies without encountering the state explosion
problem. Marwah and Fetzer [3] proposed a web server
architecture based on enhanced TCP splicing. The
enhancements allow a TCP connection to be spliced at
multiple proxies, providing both fault-tolerance and higher
scalability. Zhong Xu and Bhuyan [4] described the DNS-
based distributed system is a promising solution in terms of
performance, scalability, and availability. DNS (Domain
Name Server) name caching has significant effects on the load
balance of distributed web server systems. Casalicchio and
Tucci [5] discussed static and dynamic scheduling algorithms
for web server scalability.

B. Performance Modelling

The Researchers used various methods for modelling the
performance of web applications. Spitznagel and Garlan [6]
show how queueing network modelling can be adapted to
support performance analysis of software architectures. The
authors also describe a tool for transforming a software
architecture in a particular style into a queueing network and
analyzing its performance. However, they also state that the
performance accuracy depends upon the estimates supplied by
the users and may not be reliable. Zhaoyang, Wei, and Zhiqian
[7] proposed method of web server performance analysis,
which models the web server service threads and the queue
using Markov chain and queuing network, calculates
coefficient of performance level, integrates different
performance metrics, gives a direct quantifiable result, and
matches optimal server parameters. Calculation of
performance metrics like average delay time and throughput
of the composite web service is provided by Zhang, Chang,
Kim, and Chung [8].

Many of the researchers used Petri nets for modelling web
application performance. Kounex and Buchhman [9] discussed
how Queuing Petri-Net (QPN) models can be exploited for
performance analysis of distributed e-business systems. Hai-
Yan and Yan [10] have computed total average executive time
of a work-flow represented using Petri nets using Stochastic
Petri Nets and probability theory. Wang [11] used Petri nets

for modelling of dynamic event driven systems. Samolej and
Rak [12] proposed alternative Queueing Systems models
expressed into Timed Coloured Petri Nets (TCPNs). The
models have been used as a background for developing a
programming tool which is able to map timed behaviour of
queueing nets by means of simulation. Wells, Christensen and
Mortensen [13] modelled distributed computing environments
for performance analysis by means of Timed Hierarchical
Coloured Petri Nets.

Unlike the approaches discussed, Coloured Petri Nets
(CPNs) are used to model server sizing for concurrent users.
Sizing of the database server and web server is to be done
depending on the number of read and write requests. The
states involved in this activity are load balancer, web server
and database servers. These are defined by places. Since the
impact of concurrent users on servers is to be brought out, one
of the parameters that should be present in the model is
concurrent users. At the server side type of database requests,
number of web servers and database servers should be part of
the proposed model. These are represented with different
coloured tokens.

C. Petri Nets: Theory, Types of Petri-Nets along with Their
Properties

Petri nets, as graphical and mathematical tool, provide a
uniform environment for modelling, formal analysis, and
design of discrete event systems. It can also be used to model
asyn- chronous events, concurrent operations, process
synchronization and conflicts or re- source sharing.

Historically Petri nets find its origin in 1962 in Petri’s
dissertation [14] Since then, Petri nets are explored and used
in variety of industrial applications. Muratha [15] gives brief
review of history of Petri nets, its behavioral and structural
properties, various analysis methods and various applications.
Properties of Petri nets are discussed by Zurawaski and Zhou
[16] in the context of industrial applications. An example of a
simple robotic assembly system is used for performance
analysis, using Petri nets. The techniques are explained by
examples of simple production systems. The paper introduces
various types of Petri nets like high-level Petri nets, Fuzzy
Petri nets, and Temporal Petri nets. Various methods and
algorithms for analysis of Petri nets is discussed by Heiner and
Donaldson [17].

D.Why Coloured Petri Nets?

As mentioned earlier, in order to model the web and
database sizing architecture, one needs to consider parameters
such as number of concurrent users, load balancer
configuration, database request type-read or write, status of
the active server etc. Normal Petri-Net model will become
very complicated with these details as it allows only a single
type of token. In Generic Petri-Nets all tokens are identical
and there is no way to differentiate between the tokens.

However, in CPNs each of these parameters can be
represented by a separate coloured token. CPNs allow to
attach data value to a token in terms of token colour. The data
value can be a simple number, a string, a structure consisting

2050

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

of some fields etc. Associating additional data is also possible.
This is mainly achieved by transition from identical tokens to
typed tokens that can hold any kind of data. Hence, CPNs
allow to construct a more compact model. Use of coloured
tokens and simulation rules makes CPN a very powerful
technique for modelling dynamic behaviour of a system as per
Jensen [18]. We have used PIPE-2 [19] tutorial to do the
modelling using CPNs. PIPE-2 is chosen due to simplicity of
the user interface and ease of work.

Though there is a lot of work done in the area of
performance modelling, the focus of this paper is on web
application architecture on server side. The model does not
focus on network but rather on various possibilities of
architectures of web and database servers that can help
achieve the desired performance in terms of concurrent users.
The model is based on experimentation and on experience of
various web based applications. A qualitative analysis of the
model is done using Petri-Net’s analysis methods which help
verify the correctness of the proposed model. The model
identifies how the increase in number of concurrent users and
type of query affects the sizing and architecture of the web and
database servers. It also focuses on bringing out the
appropriate architecture for web and database servers given
the number of concurrent users and type of queries.

II1. MODEL FOR WEB SERVER ARCHITECTURE

In a client-server architecture, web and database server
capabilities determine the maximum number of concurrent
users accessing the application. In this section, a model is
proposed for web and database server sizing, and different
architectures for them. The model also depicts the change
required in the architecture with varying number of concurrent
users. It focuses on the need to restructure the architecture on
server side to improve the performance.

In the first phase, a Web Server Model (WSM) explaining
the impact of concurrent users is developed. In the second
phase, Database Server Sizing Model (DSSM) considering
types of SQL queries is developed, and in the last phase a
CPN model for Web Application Architecture is developed by
integrating WS model and DSS model. The model is described
in the same order ahead. Models are designed using CPN and
a tool PIPE-2 of Charalambous [20] and Bonet [21]
respectively. The selection of CPN as a modelling tool and the
details of all these models are discussed in this section.

A. Web Server Model (WSM)

A Web Server Model design should capture architecture for
24X7 availability, scalability, and varying server capabilities.
To achieve 24 x 7 availability, a fail-over server in active-
passive mode is considered, whereas to achieve the scalability
for supporting large number of concurrent users active-active
clustered mode configuration gets the priority. Active-active
configuration is used when concurrent access load need to be
distributed among multiple clustered servers.

LO-1-1 ActServ-1

HW-Failure

PassiveServ

HNewActServ

o o
TransPassServ ActServCrash

Fig. 1 Web Server Model (WSM) using CPN

1. Places and Transitions

Places or states which are used in WSM are (1) active and
passive servers (each server to be shown by a separate state),
(2) fail-over server, and (3) load balancer.

At least two active servers are required to demonstrate
active-active mode, one passive server along with one active
server to demonstrate active-passive configuration and a fail-
over server should be present for fulfilling the requirement of
24 X 7 availability. The events involved are shown as
transitions in the model (Fig. 1). The model represents both
active-active and active-passive architectures.

For active- active three load balancer configurations are
considered - load distribution in the ratio of (50-50), (60-40)
and (70-30) and are shown with transitions LD—-1-1,
LD-3-2,LD-7-3 in Fig 1.

2. The WSM Description

Fig. 1 shows the proposed WSM. The upper portion of the
model depicts active-active architecture whereas the lower
portion covers active-passive with possible fail-over
mechanism.

The fail-over server is not shown separately in active-active
because if one server fails the load balancer distributes the
requests among the remaining working servers. Table I gives
the description of all the states and transitions that are used in
WSM.

In active-active mode, only one of the transitions of
LD—-1-1, LD—3-2, LD—7-3 will be active at any given point
in time. Requests will be distributed to the two active servers
as per the chosen ratio by the load balancer.

2051

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

TABLE 1
PLACES AND TRANSITIONS USED IN THE PROPOSED MODEL

Web Petri-net
Component Component

Description

This represents the portal or client side from

which requests are sent.
The LB place represents the load bal- ancer
that stores the requests from concurrent users

for further distribu- tion among various
Requests servers.

The CR transition represents the con- current

LB requests from the users.

The ActServ-1 is the active server in the
active-active configuration of load balancer.
The two active servers are shown in the
active-active mode in the model among which
load is distributed by load balancer.
This is also one of the active servers in the
active-active configuration of load balancer.
This is the transition that represents equal
distribution of load among two servers in
active-active configuration.

This is the transition that represents
60-40 distribution of load among two servers

Place in active-active configuration.

This is the transition that represents
70-30 distribution of load among two servers
in active-active configuration.

This is the event represented by tran- sition
that leads to selection of active- passive
configuration.

Place The ActServ is the active server of the active-

passive configuration that han- dles the
concurrent requests from the users forwarded
by the load balancer.
This is the passive server of the active- passive
LD-7-3 configuration that handles the concurrent
requests from the users for- warded by the
Place Transition l0ad balancer in case of active crash. This is

CR or TO

ActServ-1

Place

ActServ-2

LD-1-1 Transition

LD-3-2

Transition designed for fail back scenarios.
AP-Normal Transition This is the event when capacity of active
Transition Place server is full and is unable to handle requests
any more.
ActServ Place T_his th_e new agtive server ad_ded to the clu_ster
in active-passive configuration when active
full event is generated.
This represents the notification state when
active server in active-passive configuration
PassiveServ Transition Place crashes.
Place Transition This is the event to notify that thg further
Transition requests are to bc=j handled b;/ passive server.
Transition The helirldwa.re fallu{e event is qu- elled as
Transition Place transition that notifies the ac- tive server
Transition crash.
The DBConn-1 represents the database
ActFull NewACtServ ., ciion place CONnectivity between active- active server and
ActServCrash Transition database server.
TransPassiveServ . ncivion Place The DBConn-2 represents the database
HW-Failure Place connectivity between active- active server and
DBConn-1 database server.
DBConn-2 The concurrent requests that requires the
database access are represented by the place
database requests.
The read queries are notified by
DBReq RdReq event.
The write queries are notified by Wr- Req
event.
RdReq WrReq The database server that handles the both read
DBServ-1 and write queries.
RdOnly Write The read only queries that goes to the
DBServRd database server for read requests.
DBServWr The queries that goes to the database server

for read and write requests.
The database server that handles only read
queries.
The database server that handles both read
and write queries.

The ratio can be chosen based on the active server
specifications. Only two servers are being shown in the model,
however multiple servers can be considered to cater large
number of concurrent requests.

In active-passive mode, which is captured in the lower
portion of the model, four places and four transitions are used.
These places and transitions capture hardware failure of the
active server and active server capacity getting full. Transition
AP—Normal selects active-passive over active-active when
triggered. The requests are then sent to the ActServ rather than
ActServ—1 or ActServ—2. Whenever this server fails,
transition H W—f ailure triggers and the requests are forwarded
to PassiveServ. NewActServ is enabled when the capacity of
the ActServ is FULL.

TABLE I
TOKENS USED

Token type Token colour Representation

one red token represents1000 Requests
one black token represents one web

Concurrent users

Web SeweFS Red Black server one blue token represents 500
Write operation Blue Green writes
Read operation Purple

- one green token represents 500 reads
Hardware failure

The transitions used are only immediate transitions that can
fire immediately when gets enabled. As multiple transitions
are possible on the event, it is required to assign priority to
some transitions over other. The immediate transition makes it
possible to assign priorities. Thus, in the active-active model
LD—-1-1 is given more priority than the other two
configurations. Similarly, AP—Normal is given priority over
all LDs.

The transitions are triggered by the tokens. Table II shows
the tokens and their colours that are used in modelling the web
server architecture. For example, concurrent user requests are
represented by red colour tokens. One red token represents
1000 concurrent users. The place Requests has 10 tokens
which means 10,000 concurrent users. These requests are dis-
tributed by load balancer either among active-active server or
to active-passive server depending upon the enabled transition.
When one red token which represents concurrent requests is
released, AP-Normal transition is enabled which is fired to
send the requests to ActServ in active-passive configuration.
When number of requests increases to 4000 shown by the 4
red tokens on the arc from ActServ to ActFull transition,
transition ActFull gets activated and N ewActServ is added.
When two red tokens are released the transition LD—1—1 is
enabled. If LD—1—1 is chosen the requests are distributed 50-
50% i.e. one red token from LD—1—1 to ActServ —1 and one
for ActServ — 2 representing 2000 requests that are divided
equally as 1000 to each. When five red tokens are released
LD—-3-2 is enabled it sends 3 red tokens to ActServ—1 and 2
red tokens to ActServ — 2 representing 3000-2000 distribution
of 5000 requests and LD —7-3 is enabled when 10 red tokens
are released, it sends 7 and 3 tokens to ActServ—1 and
ActServ—2 respectively representing 7000-3000 distribution of
10,000 requests.

3. Simulation

Simulation is an experimentation with a model of a system.
A CPN model is an executable representation of a system
comprising of the states and the events or transitions that

2052

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

causes the system to change its state and move to another state
based on the type of event. It is possible to analyze and
explore various scenarios and behaviour of a system using
simulations provided by CPN Model.

LD-1-1 ActServ-1

HW-Failure

Passive Serv

L

1

0 0

o o

o o
TransPassServ ActServCrash

Fig. 2 Hardware Failure in Active-Passive mode

One such scenario of WSM is shown in Fig. 2. When
ActServ is full, a new node called NewActServ is added to the
cluster. The PassiveServ is defined by place that is
continuously listening to the ActServ. In case ActServ fails, the
PassiveServ takes over. Fig. 2 shows this simulated scenario.
The event hardware failure is also defined in the model by a
transition to show this scenario. The presence of purple dot in
place ActServ activates the hardware failure event showing the
condition of active-crash. Henceforth, request to transition
TransPassServ is activated and the requests get forwarded to
PassiveServ. The analysis of this model is covered in Section
IV.

B. Database Server Sizing Model

Similar to architectures of web servers, different
architectures are followed for database servers as well.
Database server sizing model (DSSM) captures these
architectures.

To provide 24x7 availability and zero data loss, database
servers are either designed in cluster with one or more active
and/or passive servers, or in active-active configuration
similar to that of web servers. Active-active configuration is
more flexible and cost effective. In databases like Oracle both
these configurations are supported. However, in PostgreSQL,
which is the focus of this paper, only active-passive
configuration is supported. This becomes a limiting factor
when a large number of concurrent users need to be catered.

Fig. 3 DSS Model

For considering sizing of database server requires the type
of SQL queries being executed on the database. To start with
we experimented using the basic read and write type of SQL
queries for suggesting the basic model for database server
sizing. The proposed model is referred as Database Server
Sizing Model (DSSM) and is shown in Fig. 3.

1. Places, Transitions, and Tokens

The states involved in this activity are load balancer LB,
web server WebServ and database servers DBServ—1,
DBServRd, DBServWr. These are defined by places in DSS.
To understand the impact of concurrent users on servers, one
of the parameters that should be present in the model is
number of concurrent users. Concurrent users are taken as red
colored tokens shown in LB. In database queries contains two
types of operations, read, and write, on which the performance
of the database server is decided. Blue and green coloured
tokens used to represent the type of SQL queries read or write)
being executed on the database.

Queries like “SELECT” are considered as read query which
does not modify the content of the database whereas
“UPDATE”, “INSERT” or “DELETE” queries are written
queries where data may change with execution of these
queries. Simple queries of both the types are considered while
proposing the model.

2. DSSM Description

One red token represents 1000 concurrent users. Model in
Fig. 3 thus shows that the chosen web server can handle 1000
concurrent users. For large number of concurrent users’
multiple servers should be clustered through a load balancer.
The application chosen has read and write requests for
databases which are considered equiprobable currently.
However, this can be modified as per the application. When
1000 concurrent users event T 0 is fired, it gets converted to
one black token (additional web server), one green (500 read)
and one blue (500 write) tokens. Events Rdreq and WrReq
consume the concurrent read and write requests. Current
postgreSQL server was supporting 2000 concurrent
connections according to the experimentation thus 1000 reads
and 1000 writes. Hence, the architecture shown in the Fig. 3
was sufficient.

2053

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

LO-1-1

Requests

HW-Failure

Passive Serv

o 1]
TransPassServ ActServCrash

ActSerw-1

DB ServRd

DBConn-2

Fig. 4 CPN Model for Web Application Architecture

The number of concurrent users for a given application
keeps on increasing and so as the number of read and write
queries. After serving a certain amount of connections a
thresh- old point reaches for the database server which is
determined through experimentation discussed in Section IV.
To avoid the risk of failure, one of the solution is to add two
database servers with one database server for read requests
and another database server for handling write requests as
shown in Fig. 3. Henceforth all the read requests can be
handled by newly added DB ServRd and all the write requests
by the DB ServWr. For the architecture depicted by the model
in Fig. 3, the code needs to be modified at the web server end
so that the read requests will be directed to separate server and
write requests to another database server. In addition to this,
data on both the servers should remain in sync and hence,
appropriate synchronization technique needs to be adopted. In
the experimentation, we implemented data synchronization
through synchronous replication feature provided by
PostgreSQL 9.3, hence current proposed model will be for
PostgreSQL.

3. Experimentation

Experiments were carried out on PostgreSQL Database
Server to find out the threshold in terms of maximum number
of connections a server can handle. JMeter, a load simulation
tool was being used to generate the required load. The number
of connections per second were increased gradually to verify
the scalability of the DB server i.e. maximum number of
connections it can handle without giving any error.
Transactions started at database server shall have no error, i.e.
success rate for all transactions must be 100%.

The experimental set-up had two Virtual Machines with 2
QEMU virtual CPU version (cpu64) 2.67 GHz and 4MB
Cache each, 4GB RAM and 4GB of Swap Memory. Both the
servers were having CentOS version 6.4 (64 bit), Kernel:
2.6.32-358.el6.x86 64 GNU Linux, Java Version 1.7 and
JMeter version 2.8 installed and configured. Minimal
modifications in PostgreSQL configuration file were done to
ensure optimal use of hardware resources: (1) shared buffers
(Identifies the need of cache memory for PostgreSQL) = 4096
MB (default value 128 MB); (2) max_connections = 2000
(default value 100). As discussed earlier two types of database
queries, SELECT (Read Operation) and UPDATE (Write
Operation) were used for basic experiment. The database
stores registration records of lacs of students for a national
level examination. We have created a table with name
Applicant which stores registration information for the
applicant. The table only stores numeric and alphanumeric
data and has 43 fields. The size of Applicant table with data is
around 3 GB and contains 10 million application’s data, and
average row size is 300 bytes. There is a Primary Key Index
on ApplicationID column. Queries used are SELECT * FROM
applicant WHERE applicationid=? and UPDATE applicant
SET score = score * 1.10 WHERE applicationid=?

The objective of the experimentation was to determine
threshold in terms of a maximum number of concurrent
connections a server can handle. The threshold for the server
chosen for experiment reached at 3000. This experiment result
is used to design the database server sizing model(DSSM).
Analysis of the model is given in Section IV.

2054

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

Requests

HW-Failure

PassiveServ

o o
TransPass Serv ActServCrash

ActServ-1

Fig. 5 Simulation

C. CPN Model for Web Application Architecture

Fig. 1 showing Web Server Model and Fig. 3 showing
Database Server Sizing Model are integrated to form the CPN
Model for Web Application Architecture. Two models are
connected by DB Connection as shown in Fig. 4.

Two different transitions DBConn—1 and DBConn—2 are
used to connect to DBReq instead of using a single transition.
If a single transition is used, it will be active when both
connections are one i.e. AND operation. However, as only one
of the configurations will be active at any given point in time
the transition will never be executed. To avoid the
representation of this wrong scenario two different transitions
are used.

1. Simulation

One of the Simulations run from the CPN Model for Web
Application Architecture is shown in Fig. 5. When threshold
for DBServ—1 reaches, the requests are directed to the
DBServRd and DBServWr through enabled transitions RdOnly
and W rite.

IV. ANALYSIS

The model should adhere to the basic properties of Petri
Nets like Reachability, Cover-ability, Boundedness. To cover
behavioural and structural properties of Petri-nets, behavioural
and structural analysis methods are applied to the model. The
Cover-ability (Reachability) represents behavioural aspect A.
Kostin [22] while Incidence matrix, Minimal Siphon and
Minimal Trap, and Invariant analysis characterises the
structural aspect of Petri Net Models.

A. Analysis of Web Server Model

Web Server Model (WSM) belongs to asymmetric choice
class. This class is also known as Simple Net. The two
properties of the asymmetric choice net on the basis of which
Web Server Model is classified as Simple Net are conflict
transitivity and place liveness. If either el or €2 can occur but
not both then two events are in conflict , If both events can
occur in any order without conflicts then they are concurrent.

In the asymmetric choice net any pair of transitions among
transitions in choice are in a conflict relation. At a time, we
can have only one of the configurations activated or enabled.
There is a choice. But we cannot use all configurations
together. For example, in WSM, transition LD —1-1 is in
conflict with LD—3-2 and LD—3-2 is in conflict with
LD—7-3. Again LD—7-3 is in conflict relation with LD—1—1.
Similarly, active-active configuration is in conflict relation
with active-passive.

Calculations of Invariant analysis for Web Server Model are
done using Farkas algorithm [23]. After analysis, only one row
with all zero entries remains corresponding to which there are
non-zero entries in the augmented side of matrix obtained
from incidence matrix analysis shown in Fig. 6. There is only
one P invariant in the Web Server Model shown in Fig. 7,
which proves the boundedness of the model. The P invariant
obtained is used to calculate the weighted sum of tokens. The
number of tokens at each place is multiplied by the weightage
obtained from the P invariant and the sum should be constant
to prove the boundedness of the Petri net.

2055

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

WSM is a bounded Petri Net hence there is reachability
graph. There is no need of coverability graph. As we use
coverability graph when Petri net is unbounded. Reachability
graph analyses the reachability of various server places in the
Web Server Model. It ensures that requests from the users are
reaching the servers.

B. Analysis of DSS Model

The Database Server Sizing(DSS) Model belongs to State
Machine class as each transition has exactly one input and one
output. Asymmetric Choice Net has a marking at which one
transition is enabled while other is disabled in a choice.
Hence, DSSM belongs to Asymmetric Choice Net class as
well.

In DSSM where priority is given to read and write query,
transitions going to common DB Server over only read and
only write transitions which are going to separate servers. So,
when token comes at place DBReq, read query and write query
transitions are enabled while only read and only write remains
disabled. When threshold reaches for DBServ—1, RdOnly and
Write transitions are enabled so as to redirect the requests
henceforth.

The incidence matrix is obtained from incidence matrix
analysis which is used to perform invariant analysis. We have
analysed that after performing the invariant analysis there is
only one P-invariant in the DSS Model, as there is only one
row left with all the zeros and corresponding non-zero entries
in the augmented side of matrix which gives the places that
forms the P-invariant.

In the model four tokens at place LB and one token at
webserver place makes total of five tokens, while zero tokens
at other places as shown in Fig. 9. The DSS Model consists of
a place LB as minimal siphon as this is the place in Petri Net
which once becomes empty (free of tokens) in the marking
then never gains the tokens. The minimal trap can be from
either of the places DBServ—1, DBServRd, DBServWr. These
are the places in the Petri Net which once gains token in the
marking then never lose it according to the definition of trap.
The Database Server Sizing Model is a bounded Petri Net and
hence there is reachability graph.

C.Analysis of CPN Model for Web Application Architecture

The integrated performance model falls into category of
Asymmetric Choice Net due to the property of conflict
transitivity. The asymmetric choice of transitions LD—1-1,
LD—3-2, LD—-7-3 and active-passive in WSM, also
asymmetric choice of transitions RdReq, WrReq and RdOnly,
W rite makes the model Asymmetric Choice Net. As per the
invariant that the integrated CPN Web Application
Architecture Model is also bounded as shown in Figs. 10 and
11.

The integrated model consists of place Requests as minimal
siphon, as this is the place in Petri Net which once becomes
empty (free of tokens) in the marking then never gains the
tokens.

Petri net incidence and marking

Forwards incidence matrix I
ActFull LD-1-1 LD-3-2 LD-7-3 AP Normal HW- Failure TransPassServ CR
ActServ-1

0 o (1] o) 0 0 o
—-—-—_—-
ActServ-2
Passiveserv _—_——__-

LB

NewActServ ---————-
ActServCrash 0

Requests —-—————-

Backwards incidence matrix
ActFull LD-1-1 LD-3-2 LD-7-3 AP Normal HW- Failure TransPassServ CR
ActServ-1

3 0 0 0 0 4 0 0
unuu———n

ActServ-2
Pusweserv --—_——_ﬂ
Newhctser _-—-——_!

ActServCrash 0

ActServ

ActServ

Requests --—-——_-
Combined incidence matrix /
ActFull LD-1-1 LD-3-2 LD-7-3 AP Normal HW- Failure TransPassServ CR
ActServ -3] 0 1] 1 -4 0 1]
ActServ-1 _-—-———-
ActServ-2

meesﬂrv --—-———-

Nemﬂsew -—-————-
ActServCrash 0

Requests ----———I
Inhibition matrix H
ActFull LD-1-1 LD-3-2 LD-7-3 AP Normal HW- Failure TransPassServ CR
ActServ 0 0 0 1] 0 0 0 1]
ActSarv-1 _---___!
ActServ-2

Pausweserv _-—-—_—-
NewMSeN —-——-—_H

ActServCrash 0
Requests _——_———-
Marking

ActServ ActSsrv- Ar,tSarv— PassiveServ LB NewActServ ActServCrash Requests

Initial 1

cm"f-‘mt-___-__—
Enabled transitions
ActFull LD-1-1 LD-3-2 LD-7-3 AP Normal HW- Failure TransPassServ CR
no no ne no no ne no yes

Fig. 6 Incidence matrix analysis of Web Server Model

Petri net invariant analysis results
T-Invariants

ActFull AP Normal CR HW- Failure LD-1-1 LD-3-2 LD-7-3 TransPassServ

The net is not covered by positive T-nvanants, therefore we do not know if it is bounded
and live

P-Invariants

ActServ Am:e“" mg’“" ActServCrash LB v

The netis covered by positive PAnvariants, therefore itis bounded.

P-Invariant equations

2MActSen) + 2M(ActSen-1) + 2M{ACSen-2) + 10M{ACtSenvCrash) + 2M(LB) + 6M
(NewActServ) + 8BM(PassiveServ) + 2M({Requests) = 50

Analysis time: 0.0s

Fig. 7 Invariant analysis of Web Server Model

The minimal trap can be from either of the places
DBServ—1, DBServRd, DBServWr. These are the places in the
Petri net which once gains token in the marking then never
lose it. The Integrated CPN Web Server Model is a bounded
Petri Net hence there is reachability graph.

2056

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

Petri net incidence and marking

Forwards incidence matrix /™
CR RdOnly RdReq Write WrtReq
DBServ-1 [0 NG I O
DBESservRd [0 TN N0 N0 wons

WebServ (1[0 0 [0 [0
Backwards incidence matrix F

CR RdOnly RdReq Write WrtReq

DBServ-t [0/ 0o To 0

DBServRd [0 IO o

DBSenWrt 0 0 [0 [0 0 |
LB o | o
WebServ 00 [T NI S I

Combined incidence matrix /

CR RdOnly RdReq Write WrtReq
DBaserv-1 [IR N IO T
DBServid 0] [N 0N MO Mo
DBServWrt 0/ 0 00 1Td
LB i i | s | A 1|
WebServ [T [EA S A

Inhibition matrix H

CR RdOnly RdReq Write WriReq
DBServ-1 ﬂ““ﬂ“
DBServRd (010
DB ServWrt

webserv [0 0 e [0 [a |
Marking
DBServ-1 DBServRd DB ServWrt LB WebServ
initol SN RN I A
Current/ 0 ' 0 | 0 a1

Enabled transitions
CR RdOnly RdReq Write WrtReq
¥es [1ino [ino ™ [na! [Fno

Fig. 8 Incidence matrix analysis of DSS Model

Petri net invariant analysis results
T-Invariants
CR RdOnly RdReq Write WrtReq
The net is not covered by positive Tnvariants, therefore we do not
know if it is bounded and live.
P-Invariants
DBServ-1 DBServRd DBServWrt LB WebServ
The net is covered by positive P-Imvariants, therefore it is bounded.
P-Invariant equations

M{DBServ-1) + M(DBSernvRd) + M{DBSenAV) + M(LE) = M
(WebSen) =5

Analysis time: 0.0s

Fig. 9 Invariant analysis of DSS Model

V. CONCLUSIONS

The paper proposed a model for web and database server
sizing, and architecture change based on the varying con-
current users. The model focuses on need to restructure the
architecture on server side so as to improve the performance.
The proposed model mainly identifies how the increase in
number of concurrent users and type of query affects the
sizing and architecture of the web and database servers. It also
helps in bringing out the appropriate architecture for web and
database servers given the number of concurrent users and

type of queries. The proposed model for Database is based on
the experimentation on PostgreSQL and hence considers
architectures supported by PostgreSQL only.

Petrd net invariant analysi |
T-nvariants
Actrun (P g DB Gonn DR Conn. MW LD LD 3 LT kaoniy ReReq TransPass Sen Wiite Witkeq
Thee et s ot positve Tdmwanants, o do ot know if itis bounded and kve.
P-Invariants
ActServ ActSenvi Actserv "B —

-———-———.———
The net is covered by positive P-imeariants, therefore it is bounded.

P-invariant squations
+4M(DB Req) + 4MDB Server1) + SNDBSenvRd) + &M
Al) = 2MiRequests) = 50

AnalysIs Ime 0 007s

Fig. 10 Invariant analysis of Web Application Architecture
Performance

The proposed model currently assumes specifications for
servers and bandwidth. In future, we would like to extend the
model to modify the architecture based on server
configuration and available bandwidth to cater the concurrent
users.

Petri net incidence and marking

Forwards incidence matrix I

DB HW- LD- LD- LD-

DB
Connd Comm2 Faure a 5% 5% ReOnly RdReq TransPassServ Write WriReq

DB Serveri
DBServRd
DBServWrt
i

NewActSery

PassiveSery

Requests
Backwards incidence matrix I

AP oo DB oe HW- LD- LD- LD-

il Commd Comp? Fulre 14 55 7 RdOnlyRdReq TransPassServ Write WriReq

Combined incidence matrix /
DB HW. LD. LD- LD-

AP DB
ActFul o CR ool Gonna re 14 3.2 7.3 RdOnly RdReq TransPassServ Write WrtReq

%
-
I
i
i

" RdOnly RdReq

H

nsPassServ Write WrtReq

%
!

DBServRd
DBServWrt
L8
NewActServ
PassiveServ

ActServ ActServl Actserv2 ActServCrash o o OF | DBServRd DBSerWirt LB NewActServ PassiveServ Requests
tnitial [N TR I IS 2 T ST N 73 O T i |
Cusrre: ESETHN ST ST ST 7 7 O A [] T [

Enabled transitions
ActFull AP Normal CR DE Conn-1 DI Gonn-2 HW-Failure LD-1-1 LD-3-2 LD-7-3 RdOnly RdReq TransPass Serv Write WitRea
‘ma | no yes me | ne | m om0 ol IEno Mot Imer

Fig. 11 Incidence matrix analysis of Web Application Architecture
Performance Model

2057

(1

(6]

(7

(8]

[10]

[11]
[12]

[13]

[14]

[15]

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:8, 2015

REFERENCES

J. T. Vicenc Beltran and E. Ayguade, “Improving web server perfor-
mance through main memory compression,” 14th IEEE International
Conference on Parallel and Distributed Systems, 2008.

D. K. Mahnaz Shams and B. Far, “A model-based approach for testing
the performance of web applications,” Proceedings of the Third
International Workshop on Software Quality Assurance, 2006.

S. M. Manish Marwah and C. Fetzer, “Fault-tolerant and scalable tcp
splice and web server architecture,” 25th IEEE Symposium on Reliable
Distributed Systems, 2006.

R. H. Zhong Xu and L. N. Bhuyan, “Load balancing of dns-based
distributed web server systems with page caching,” Proceedings of the
Tenth International Conference on Parallel and Distributed
Systems,2004.

E. Casalicchio and S. Tucci, “Static and dynamic scheduling algorithms
for scalable web server farm.”

B. Spitznagel and D. Garlan, “Architecture based performance anal-
ysis,” Proceedings of 1998 Conference on Software Engineering and
Knowledge Engineering, pp. 146-151, 1998.

Q. Zhaoyang, W. wei, and L. Zhiqian, “Web server optimization model
based on performance analysis,” In IEEE Proceedings of 6th
International Conference on Wireless Communication Networking and
Mobile Computing, pp. 1-4, 2010.

J. Zhang, C. Chang, S. Kim, and J. Y. Chung, “Ws-net: A petri-net
Model based specification model for web services,” In IEEE of
International Conference on Web Services, 2004.

S.Kounex and A.Buchhman, “Performance modelling of distributed e-
business applications using queuing petri nets,” IEEE Proceedings,
2003.

X. Hai-yan and W. Yan, “Workflow model based on stochastic petri nets
and performance evaluation,” IEEE International Symposium on IT in
Medicine Education, vol. 1, pp. 245-249, 2009.

J. Wang, Petri nets for dynamic event driven system modeling, 2007.

S. Samolej and T. Rak, “Simulation and performance analysis of
distributed internet systems using tcpns,” Informatica, vol. 33, pp. 405—
415, 2009.

L. M. K. Lisa Wells, Sprren Christensen and K. H. Mortensen, “Sim-
ulation based performance analysis of web servers,” IEEE, 2001.

C A Petri, “Kommunikation mit automaten,” Schriften des Rheinisch-
6Westflischen Institutes fr Instrumentelle Mathematik an der
UniversittBonn Nr. 2, 1962.

T. Muratha, “Petri nets:properties analysis and applications,” Proceed-
ings of IEEE, vol. 77, no. 4, pp. 541-580, November 1989.

R. Zurawaski and M. Zhou, “Petri nets and industrial applications: a
tutorial,” IEEE Transactions on Industrial Electronics, vol. 41, no. 4, pp.
567-583, December 1994.

D. G. M. Heiner and R. Donaldson, “Petri nets for systems and synthetic
biology,” Formal Methods for Computational Systems Biology,
LNCS,2008, vol. 5016, pp. 215-264, 2008.

K. Jensen, “Coloured petri nets. basic concepts, analysis methods and
practical use,” Basic Concepts. Monographs in Theoretical Computer
Science, Springer-Verlag, vol. 1, 1997.

PIPE-2, “http://pipe2.sourceforge.net/,” 2007.

A. Charalambous, “Extension of pipe2 to support coloured generalised
stochastic petri nets,” PhD thesis, Imperial College of London, 2010.

R. P. Pere Bonet, Catalina M. Llado, “Pipe v2.5: a petri net tool for
performance modeling.”

A. Kostin, “A reachability algorithm for general petri nets based on
transition invariants,” Springer-Verlag, ISBN 978-3540377917, Lecture
Notes in Computer Science, vol. 4162, pp. 608-621, 2006.

J. Farkas, “Theorie der einfachen ungleichungen,” ur die Reine und
Angewandte Mathematik, vol. 6, pp. 124-127, 1902.

2058

