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Implementation of ADETRAN Language Using
Message Passing Interface

Akiyoshi Wakatani

Abstract—This paper describes the Message Passing Interface
(MPI) implementation of ADETRAN language, and its evaluation
on SX-ACE supercomputers. ADETRAN language includes pdo
statement that specifies the data distribution and parallel computations
and pass statement that specifies the redistribution of arrays. Two
methods for implementation of pass statement are discussed and the
performance evaluation using Splitting-Up CG method is presented.
The effectiveness of the parallelization is evaluated and the advantage
of one dimensional distribution is empirically confirmed by using the
results of experiments.

Keywords—Iterative methods, array redistribution, translator,
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I. INTRODUCTION

MPI is usually utilized as a defact standard for

programming on distributed memory multicomputers

such as PC clusters and supercomputers, while PGAS

(Partitioned Global Address Space) language is getting popular

in order to improve both of a productivity of programs and

an effective performance. PGAS language, which includes

Coarray Fortran [1], X10 [2], Chapel [3] and XcableMP

[4], has the characteristic that arrays are distributed over a

multicomputer and the distributed arrays can be transparently

accessed from every node of the multicomputer. Namely,

the effective performance can be improved by reducing the

number of data transfers between nodes, and the productivity

of program can be improved by accessing distributed arrays

transparently and then simplifying programs without MPI

type communication like Send/Recv. For example, Coarray

FORTRAN is implemented by using MPI to achieve a high

performance [5]. On the other hand, the authors developed

ADETRAN language based on FORTRAN language for

ADENART machine and evaluated its performance [6].

ADENART is a distributed memory multicomputer equipped

with a network that efficiently redistributes two-dimensional

arrays and three-dimensional arrays at the same cost as

memory accesses. ADETRAN language is a FORTRAN based

language that includes a statement for data distribution based

on data parallel, a statement for data redistribution and a

mechanism of overlapping computation with communication.

Although ADETRAN language is different from PGAS

languages, it is one of approaches that exploit data locality

and improve program productivity.

This paper describes the implementation policy of

ADETRAN language by using MPI and presents the
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performance evaluation. The availability of ADETRAN

language on distributed memory multicomputers is discussed

and the translator of ADETRAN language is also mentioned.

II. ADETRAN LANGUAGE

A. ADENART

ADI (Alternating Direction Implicit) is an iterative method

for a partial differential equation that tries to converge

a solution with changing the direction to solve. It is

known that this method is easy to parallelize because

other dimensions except for one dimension are solved

independently, but array redistribution is needed on distributed

memory multicomputers. For example, three-dimensional

array element A(i,j,k) is the i-th data on (j,k) processor

on the x-direction, and then it should be redistributed to the

j-th data on (k,i) processor on the y-direction if necessary.

ADENART is a distributed memory multicomputer equipped

with a network that is suitable for such a redistribution. In

addition, since such a network is also suitable for Splitting

Up CG (Conjugate Gradient) method [7] as well as ADI,

ADENART is used for fluid dynamic simulations and plasma

simulations. Therefore, ADETRAN language is designed so

that array redistribution is easily described.

B. Pdo Statement

Hereafter the case of three-dimensional arrays is described.

In ADETRAN language, an array element with “/” specifies

a distributed array. In Fig. 1, array element A(i,/j,k/) is

the i-th data on (j,k) processor.

In the figure, pdo statement specifies parallel executions.

Namely, on Ny×Nz processors, loop iterations (i=1, Nx)

are executed with array elements distributed in the same way

and scalar variables.

double precision A(Nx,Ny,Nz)
pdo j=1,Ny,k=1,Nz

do i=1,Nx
A(i,/j,k/)=A(i,/j,k/)*2.0

end do
pend

Fig. 1 Pdo Statement
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C. Pass Statement

The network of ADENART is designed so that array

redistribution is easily carried out. Pass statement specifies the

array redistribution.

In Fig. 2, pass statement specifies that the i-th data

on (j,k) processor is redistributed as the j-th data

on (k,i) processor. So, after the pass statement, array

element A(i,j,k) is stored as both of A(i,/j,k/) and

A(i/,j,/k).

pass i=1,Nx,j=1,Ny,k=1,Nz
A(i/,j,/k)=A(i,/j,k/)

pend

Fig. 2 Pass Statement

D. S-Scheme

Although ADENART is equipped with a network suitable

for array redistribution, the communication overhead of

the redistribution may cause the degradation of effective

performance. In order to amortise the overhead, ADENART

has the overlapping mechanism that a signal is emitted when a

substitution to the data is completed and then a send operation

starts as soon as the signal is found. This mechanism is

called S-scheme, which theoretically hides the communication

time behind the calculation time. To utilize the S-scheme,

ADETRAN compiler should find the consecutive pair of

pdo statement and pass statement and should produce the

instructions for the S-scheme. Fig. 3 shows the example where

S-scheme can be carried out.

pdo j=1,Ny,k=1,Nz
do i=1,Nx
A(i,/j,k/)=A(i,/j,k/)*2.0

enddo
pend
pass i=1,Nx,j=1,Ny,k=1,Nz

A(i/,j,/k)=A(i,/j,k/)
pend

Fig. 3 S-Scheme

Namely, just after the substitution of A(1,/j,k/)
is completed, the data transfer of A(1,/j,k/) to

A(1/,j,/k) is started, which is overlapped with

the computation of A(2,/j,k/). If there is enough

computation, the overhead of the communication can be

completely hidden.

III. IMPLEMENTATION POLICY

Our implementation policy is so simple that the

translator can be easily created for any distributed memory

multicomputers. We do not exploit any specific feature of the

multicomputers. Note that, in this paper, C language based

implementation is described, but our approach can be easily

extended to FORTRAN language based implementation.

A. Implementation of Pdo Statement

The distribution of an array element is determined

by the location of “/”. When three-dimensional array

A(Nx,Ny,Nz) is distributed over P(= P1×P1) processors,

A x[Nz/P1][Ny/P1][Nx], A y[Nx/P1][Nz/P1][Ny] and

A z[Ny/P1][Nx/P1][Nz] are allocated on each processor. So,

A(i,/j,k/) is defined as A_x[k%P1][j%P1][i] on

processor (j/P1, k/P1), and A(i/,j,/k) is defined as

A_y[i%P1][k%P1][j] on processor (k/P1, i/P1).

According to the above array representation, an

x-directional pdo statement shown in Fig. 1 is roughly

implemented as follows:

for(int _k=0; _k<Nz/P1; _k++){
for(int _j=0; _j<Ny/P1; _j++){
for(i=0; i<Nx; i++){
A[_k][_j][i]=A[_k][_j][i]*2.0;

}
}

}

Fig. 4 Implementation of pdo statement

The reason why variables j and k are expressed as _j
and _k in Fig. 4 is that variables j and k must be actually

expressed as j= id1∗(Ny/P1)+ j and k= id2∗(Nz/P1)+ k.

B. Implementation of Pass Statement

In the case of the redistribution between x-direction and

y-direction shown in Fig. 2, one-to-one communication from

(j,k) processor to (k,i) processor should be carried out.

In practice, each processor sends data of (Ny/P1)×(Nz/P1)×
(Nx/P1) as a group. Since each processor sends data to P1

processors and receives data from P1 processors for the array

redistribution, the number of communication activations must

be totally P1×P1×P1. On the other hand, (j,k) processor

sends data to (k,i) processor and then the destination of

P1 processors ((j,k) j=0...P1) is the same, so we have an

alternative method, That is, these P1 processors first send data

to (k,k) processor by using gather communication that is one

of MPI collective communications, and then (k,k) processor

distributes data to P1 processors ((k,i) i=0...P1) by using

scatter communication that is also one of MPI collective

communications. Therefore, the number of communication

activations can be reduced to 2×P1×P1 compared with the

first method. However, although the latter method can reduce

the number of communication activations, the latter method

requires two collective communications and thus total data

size of the array redistribution is large. In addition, since only

one communication can be hidden behind the computation by
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hhhn = C−1(Auuun − fff )

τ =
(hhhn,Chhhn)

(dddn,Adddn)

uuun+1 = uuun + τdddn

hhhn+1 = hhhn + τC−1Adddn

β =
(hhhn+1,Chhhn+1)

(hhhn,Chhhn)

dddn+1 = −hhhn+1 +βdddn

C = (D+X)D−1(D+Y )D−1(D+Z)

D−1 = [(000,000,000)(000,(0,1/6,0),000)(000,000,000)]

D+X = [(000,000,000)(000,(−1,6,−1),000)(000,000,000)]

D+Y = [(000,000,000)((0,−1,0),(0,6,0),(0,−1,0))(000,000,000)]

D+Z = [(000,(0,−1,0),000)(000,(0,6,0),000)(000,(0,−1,0),000)]

(a) Iterative method (b) Preconditioning

Fig. 5 Splitting up CG method

using S-scheme mentioned later, half of the communications

cannot be hidden. Therefore, we take the first method on our

implementation.

C. Implementation of S-Scheme

As mentioned before, since ADENART has the overlapping

mechanism, that a signal is emitted when a substitution to

the data is completed and then a send operation starts as

soon as the signal is found, S-scheme is easily implemented.

However, distributed memory multicomputers generally do

not have such a mechanism, and it is better to send data

on MPI as a group instead of individually because the

overhead of communication activations can be amortized

to improve the total performance. Thus, since the size of

data to be sent by each processor is (Ny/P1)× (Nz/P1)×
(Nx/P1), a non-blocking send communication is started as

soon as the substitutions of the data size are completed,

and this communication is overlapped with the subsequent

substitutions of the data size. Namely, (j,k) processor starts

a non-blocking communication as soon as the data that are sent

to (k,0) processor are calculated, and the communication is

overlapped with the calculations of data that are sent to (k,1)
processor. Moreover, after the calculations are completed, the

processor starts the non-blocking communication, which is

overlapped with the calculations of data that are sent to (k,2)
processor. Note that (k,0) processor receives data from P1

processors at first, and then (k,1) processor receives data

from P1 processors and so on. So, the completion of the data

reception is not simultaneous.

IV. EVALUATION

We evaluate our approach on SX-ACE (NEC) super

computers installed at Osaka University. SX-ACE consists of

512 nodes that contains 4 vector CPUs and 64 GB memory

(256 GB/s), and the data is transferred between the nodes at

the speed of 8 GB/s. The theoretical peak performance of the

CPU is 64 GFLOPS, so the total performance reaches 132

TFLOPS [8].

A. Evaluation Using SPCG Method

Three-dimensional Laplace equation is as follows: Auuu =
fff (Aui jk ≡ 6ui jk − ui−1 jk − ui+1 jk − ui j−1k − ui j+1k − ui jk−1 −
ui jk+1). For solving the Laplace equation, we utilize a

preconditioned conjugate gradient iterative method, called

SPCG (Splitting Up Conjugate Gradient). We translate

ADETRAN program of SPCG into FORTRAN program with

MPI extensions by hand, and the FORTRAN program is used

to evaluate our approach on SX-ACE [7]. Fig. 5 shows SPCG

method and the preconditioning for SPCG method. Here, uuun

is unknown array at the n-th iteration, τn and βn are scalar

parameters for the iterative method, hhhn is a residual vector and

dddn is a direction vector that is used for updating the unknown

array.

As shown in Fig. 5, the preconditioning is suitable

for parallel computation because the preconditioning can

be solved independently in each direction, but array

redistributions are required repeatedly between different

directions in distributed memory multicomputers.

The elapsed time of 100 iterations executed on the system

of 4 nodes is measured for different array sizes with varying

the number of MPI processes and OpenMP threads. Table I

shows the results. It should be noted that the product of the

number of MPI processes and the number of OpenMP threads

per process must be up to 16, and MPI communication is not

used when the number of MPI processes is 1.

When the array size is small (48×48×48), the case of 4

MPI processes and 4 OpenMP threads per process is faster

than the case of 16 MPI processes. Otherwise, the minimal

elapsed time is achieved with 16 MPI processes. However, in

all cases, the minimal elapsed time is achieved with 1 MPI

process that does not include data transfer between nodes,

so the effectiveness of parallelization using MPI processes is

not confirmed. The reason is that the current algorithm and

implementation repeatedly utilizes array redistributions, and

the cost of the communications more strongly alleviates the

effectiveness of parallelization than expected. We will discuss

the improved version of the implementation to avoid such a

difficulty later. In addition, the S-scheme is applied to the

results, but the performance gain is very limited. We will

discuss the effectiveness of the S-scheme later.
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TABLE I
ELAPSED TIME OF SPCG METHOD (SEC.)

node MPI process OpenMP thread 48×48×48 192×192×192 384×384×384

4 16 1 0.210 4.45 39.25
4 4 0.170 5.61 112.49
4 1 0.210 7.37 313.74

1 4 1 0.166 7.34 348.89
1 4 0.045 3.04 28.96
1 1 0.094 7.15 93.12

B. Evaluation of S-Scheme

As mentioned before, the effectiveness of the S-scheme

is limited. The reason is that the computation part that

hides the communication overhead is the preconditioning

and the product of matrix and vector (Auuu) in the case of

SPCG method, and thus the computation part is too small to

hide all the communication overhead of array redistributions.

So, the effectiveness of the S-scheme is small. Then, in

order to discuss the effectiveness of the S-scheme when

the computational complexity is large, we consider 6 cases

which include pdo statement with different computational

complexity. The computational complexity of cal1 is the

smallest (2 add operations), and the computational complexity

of cal6 is the largest (60 function calls). Elapsed times in the

case of the array size of 192×192×192 are measured.

As shown in table, the effectiveness of the S-scheme is

confirmed when the computational complexity is large. For

example, when one MPI process resides on a node and 3

OpenMP threads are executed on one process, the elapsed

time in the case of cal6 is reduced to 20.6 seconds from 22.56

seconds. The reason is that since each node consists of 4 CPU

cores, 3 cores are in charge of computation and one core is

in charge of operations for the non-blocking communication,

so the elapsed time can be reduced. This effectiveness is

large in the case of a large computational complexity, but the

S-scheme degrades the performance in the case of cal1 and

cal2, because the cost of overhead of the S-scheme exceeds

the reduction of the elapsed time caused by the S-scheme.

On the other hand, when 4 MPI processes are carried out on

each node, the effectiveness of the S-scheme is very slight.

For example, the elapsed times in the case of cal6 are 21.21

seconds and 21.15 seconds, and the elapsed times in the case

of cal5 are 11.70 seconds and 11.74 seconds. The reason is

that each core is very busy for calculating and thus any core

is not in charge of receiving operation. If a core is receiving

data of the non-blocking communication, it cannot carry out

computation concurrently. Therefore, we have two alternatives;

one core must be in charge of communication in order to keep

computation concurrent with communication; all cores must be

in charge of computation and the S-scheme is not adopted. As

mentioned later, our implementation of the translator does not

utilize the S-scheme.

C. One-Dimensional Distribution

As mentioned before, the performance of the simple

parallelization does not overcome that of single node

(4 threads), unfortunately. In order to avoid such a

difficulty, three-dimensional arrays are distributed not over a

two-dimensional processor array, but over a one-dimensional

processor array. Namely, as shown in Fig. 6, arrays

are distributed in z-direction, and each processor keeps

two-dimensional distributed arrays in local. The advantage of

this configuration is that the number of array redistributions

can be reduced to 3 from 2, and thus the elapsed time

can decrease. It should be noted that when the size of the

corresponding dimension is too small, the effective parallelism

may be limited, but a large size simulation problem can

provide enough parallelism. Table III shows the results of

experiments using this configuration.

In both the cases of the array size of 192×192×192 and

384×384×384, the elapsed time on 8 nodes (32 CPUs) using

one-dimensional distribution is smaller than the elapsed time

on 1 node (1 thread), especially the speedup of over 6 is

achieved in the latter case. Although the achieved speedup

is not enough from a point of view of the number of CPUs,

the reduction of the number of array redistributions contributes

to the performance enhancement very much. In the future, in

order to alleviate the communication overhead, the algorithm

should be reconsidered and the effectiveness of our approach

should be enhanced.

double precision A(Nx,Ny,Nz)
pdo k=1,Nz

do j=1,Nz
do i=1,Nx
A(i,j,/k/)=A(i,j,/k/)*2.0

enddo
enddo

pend

Fig. 6 Pdo statement with 1 dimensional distribution

D. Translator

According to the implementation policy described above, we

develop ADETRAN translator that deals with one-dimensional

distribution and produces a program without S-shceme feature.

Fig. 7 shows the snapshot of the translator.

This translator is a prototype, but ifall statement that

calculates a conjunction of distributed LOGICAL arrays and

ifany statement that calculates a disjunction of distributed

LOGICAL arrays are available, so some practical application

programs can be processed by the translator. The translator
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TABLE II
EFFECTIVENESS OF S-SCHEME (SEC.)

4 nodes×4 MPIs×1 thread 4 nodes×1 MPI×3 threads 1 node×4 MPIs×1 thread
no S-scheme w/S-scheme no S-scheme w/S-scheme no S-scheme w/S-scheme

cal1 2.09 2.14 3.30 3.54 4.68 4.76
cal2 2.90 2.97 3.88 4.33 7.99 7.88
cal3 5.29 5.34 6.44 5.89 17.38 14.81
cal4 7.94 7.92 8.80 9.19 28.60 24.20
cal5 11.74 11.70 13.66 12.27 46.33 37.38
cal6 21.21 21.15 22.56 20.60 90.63 71.13

TABLE III
ELAPSED TIME OF SPCG METHOD WITH 1 DIMENSIONAL DISTRIBUTION (SEC.)

node MPI OpenMP 192×192×192 384×384×384

4 16 1 4.45 39.25
4 (1 dim.) 16 1 2.85 22.93
8 (1 dim.) 32 1 2.19 15.82
1 1 4 3.04 28.96
1 1 1 7.15 93.12

Fig. 7 ADETRAN translator

is constructed by using bison and flex, and produces a C

program with MPI extension through lexical analysis, syntax

analysis and semantic analysis [9]. The default number of MPI

processes is 16, but it can be easily changed to an arbitrary
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number by rewriting a define macro statement [10].

V. CONCLUSION

This paper proposes MPI implementation policy of

ADETRAN language, and presents the results of the

evaluation on SX-ACE supercomputers. ADETRAN language

easily expresses array distributions, so the translation method

of such an expression into MPI expression is described

and two methods for array redistributions are discussed.

According to our performance evaluation, the effectiveness of

parallelization for SPCG iterative method can be enhanced by

using one-dimensional distribution that is improved version of

our implementation.

In the future, we will improve the optimization of

communications for enhancing the effectiveness of

parallelization. In addition, we will apply our approach

to other languages besides FORTRAN and will develop a

new language suitable for the SPCG type algorithm.
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