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Affine Projection Adaptive Filter with Variable
Regularization
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Abstract—We propose two affine projection algorithms (APA)
with variable regularization parameter. The proposed algorithms
dynamically update the regularization parameter that is fixed in the
conventional regularized APA (R-APA) using a gradient descent
based approach. By introducing the normalized gradient, the proposed
algorithms give birth to an efficient and a robust update scheme for
the regularization parameter. Through experiments we demonstrate
that the proposed algorithms outperform conventional R-APA in
terms of the convergence rate and the misadjustment error.
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I. INTRODUCTION

THE normalized least mean square (NLMS) is most

frequently used adaptive algorithm due to its simplicity

and ease of implementation. However, its convergence rate

is significantly reduced for colored input signals [1]–[3]. To

overcome this problem, the affine projection algorithm (APA)

was proposed by Ozeki and Umeda [4]. While the NLMS

updates the weights based only on the current input vectors,

the APA updates the weights on the basis of last K input

vectors [4], [5]. In a noisy environment, the inversion of a

rank deficient matrix may give rise to numerical difficulties.

To avoid this situation, a positive constant δ called the

regularization parameter is used. We use the regularized

APA (R-APA) as opposed to simply the APA in order

to highlight the presence of the regularization parameter

δ; the terminology APA is reserved for the case δ = 0.

It is well known that the regularization parameter plays

a critical role in the performance of the R-APA [6], [7].

In the R-APA, the regularization parameter δ governs the

rate of convergence and the misadjustment error. To meet

the conflicting requirements of fast convergence and low

misadjustment error, the regularization parameter needs to be

controlled.

In this paper, we propose two R-APAs with variable

regularization parameter. The proposed schemes use a

time-varying regularization parameter which is updated

using a gradient descent based approach at each instant.

We develop an efficient and robust update scheme for

the regularization parameter by introducing the normalized
gradient. We show that the proposed algorithms have low

additional complexity compared to the conventional R-APA.

Through several experiments we demonstrate that the proposed
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algorithms outperform the conventional R-APA in terms of the

convergence speed and the misadjustment error

II. PROPOSED R-APAS

Consider data d(i) that arise from the system identification

model

d(i) = uiw
◦ + v(i), (1)

where w◦ is a column vector for the impulse response of an

unknown system that we wish to estimate, v(i) accounts for

measurement noise and ui denotes the 1×M input vector,

ui = [u(i) u(i− 1) · · ·u(i−M + 1)]. (2)

A. Regularization for R-APA

Let wi be an estimate for w◦ at iteration i. The R-APA

computes wi via

wi = wi−1 + μU∗
i (UiU

∗
i + δI)−1ei, (3)

where

Ui =

⎡
⎢⎢⎢⎣

ui

ui−1

...

ui−K+1

⎤
⎥⎥⎥⎦ di =

⎡
⎢⎢⎢⎣

d(i)
d(i− 1)

...

d(i−K + 1)

⎤
⎥⎥⎥⎦ ,

ei = di − Uiwi−1, μ is the step-size, δ is the regularization

parameter and ∗ denotes the Hermitian transpose. The obvious

effect of the regularization parameter not only employs to

avoid the inversion of a rank deficient matrix UiU
∗
i , but

also plays a critical role in the convergence performance

of the R-APA. A large regularization parameter will ensure

small effective step-size and thus the R-APA results in small

misadjustment error in steady state, but converges slowly. On

the other hand, a small regularization parameter will provide

large effective step-size and thus the R-APA converges fast but

results in large misadjustment error. Along this line of thought

we may expect performance improvement by using a variable

regularization parameter instead of a fixed δ.

B. Proposed R-APA with Multiple Regularization Parameter

To achieve this purpose, we propose R-APA which

continuously updates the regularization parameter so that

J(i) = 1
2e

2(i) where e(i) = d(i)−uiwi−1. To reduce the cost

function J(i), the regularization parameter can be modified by

a gradient descent algorithm and will be explained by starting
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with a formulation of the multiple regularization parameter as

follows:

wi = wi−1 + μU∗
i (UiU

∗
i +Δi)

−1ei. (4)

where Δi is a K ×K diagonal matrix defined by

Δi = diag [δ0(i), δ1(i), . . . , δK−1(i)] . (5)

In the proposed method, we update the regularization

parameters in (5) iteratively so that J(i) is minimized. To do

this, we use stochastic gradient descent algorithm, i.e.,

δj(i) = δj(i− 1)− ρ∇δJ(i)

for j = 0, 1, . . . ,K − 1, (6)

where ρ is a small positive learning rate parameter. The

gradient of J(i) with respect to δj(i − 1), ∇δJ(i), can be

shown to be

∇δJ(i) =
∂J(i)

∂e(i)
· ∂e(i)

∂wi−1
· ∂wi−1

∂δj(i− 1)
. (7)

Each term in (7) is simply derived as

∂J(i)

∂e(i)
=e(i),

∂e(i)

∂wi−1
= −ui,

∂wi−1

∂δj(i− 1)
=−μU∗

i−1

(
Ui−1U

∗
i−1 +Δi−1

)−2
Γj ei−1, (8)

where we are defining

Γj ≡ ∂Δi−1

∂δj(i− 1)
= diag [0 · · · 1 · · · 0] , (9)

and Γj has a value of 1 only at a jth row. Then we have

∇δJ(i) = μe(i)uiU
∗
i−1

(
Ui−1U

∗
i−1 +Δi−1

)−2
Γjei−1.(10)

However, we know that Δδj(i) = δj(i) − δj(i − 1) is

proportional to the square order of e(i). So a small e(i)
after the initial adaptation results in very small Δδj(i) and

correspondingly δj(i) undergoes small variation.

In the proposed method, we normalize the gradient, ∇δJ(i),
by its norm. The regularization parameter δj(i) is recursively

updated by

δj(i) = δj(i− 1)− ρ
∇δJ(i)

‖∇δJ(i)‖
for j = 0, 1, . . . ,K − 1, (11)

where ρ is a small positive learning rate parameter and

‖ · ‖ denotes the Euclidean norm of a vector. By introducing

the normalized gradient, the regularization parameter δj(i)
becomes robust to variation of e(i) since the normalized

version of gradient ∇δJ(i) with a fixed ρ always makes the

same stride, independent of how steep the slope of J(i) is. This

property makes the regularization parameter δj(i) relatively

stable when ∇δJ(i) is very small.

Then,
∇δJ(i)

‖∇δJ(i)‖ in (11) can be rewritten by

∇δJ(i)

‖∇δJ(i)‖ = sgn (∇δJ(i)) , (12)

where sgn(·) is the signum function which takes the sign of

variable. From (7), (11) and (12), the proposed R-APA with

multiple regularization parameter is given by:

δj(i) = δj(i− 1)−
−ρ sgn

(
μ e(i)ui U

∗
i−1

(
Ui−1U

∗
i−1 +Δi−1

)−2
Γjei−1

)
Δi = diag (δ0(i), δ1(i), . . . , δK−1(i))

wi = wi−1 + μU∗
i (UiU

∗
i +Δi)

−1ei. (13)

C. Scalar Regularization Parameter Case

The conventional R-APA update recursion (3) uses the

scalar regularization parameter. Recently, a scalar optimum

regularization for fast convergence has been started to research

as in [6]. In this section, we propose a scalar optimum

regularization parameter at each instant by assuming

δ(i) = δ0(i) = · · · = δK−1(i). (14)

Then the proposed R-APA with a scalar regularization

parameter is obtained by

δ(i) = δ(i− 1)−
−ρ sgn

(
μ e(i)ui U

∗
i−1

(
Ui−1U

∗
i−1 + δ(i)I

)−2
ei−1

)
wi = wi−1 + μU∗

i (UiU
∗
i + δ(i)I)−1ei, (15)

since
∂Δi−1

∂δj(i−1) =
∂δ(i−1)I
∂δ(i−1) = I .

D. Stability

To guarantee the stability of the proposed algorithms, we

need to set δmin such as

δj(i) = max(δmin, δj(i)), (16)

i.e., if δj(i) gets less than δmin, δj(i) is replaced by δmin at

each instant. Also, it is known that the convergence in the

mean of R-APA is guaranteed for any μ satisfying [3]

0 < μ < 2. (17)

Let us define the a posteriori estimation error as

ri = di − Uiwi, (18)

i.e., the error in estimating di by using the new weight

estimate. Since Uiwi will be a better estimate for di than

Uiwi−1, the property ‖ri‖2 ≤ ‖ei‖2 (with equality only when

ei = 0) should be satisfied. Assuming a scalar regularization

parameter, it holds that

ri =
(
I − μUi U

∗
i (UiU

∗
i + δ(i)I)−1

)
ei. (19)

and

‖ri‖2 = e∗i A
∗A ei ≤ e∗i I ei = ‖ei‖2, (20)

where we are defining

A =
(
I − μUi U

∗
i (UiU

∗
i + δ(i)I)−1

)
.

Therefore, ‖ri‖2 ≤ ‖ei‖2, if and only if the matrix I − A∗A
is positive-definite by (20). In addition, let UiU

∗
i = ViΛiV

∗
i

denotes the eigen-decomposition of the matrix UiU
∗
i . Then

UiU
∗
i + δ(i)I = Vi(Λi + δ(i)I)V ∗

i (21)
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TABLE I
COMPUTATIONAL COMPLEXITY

Algorithm multiplications additions

R-APA [3] (K2 + 2K)M (K2 + 2K)M
+K3 +K +K3 +K2

Proposed (11) KM +K2 + 3K + 1 KM +K2 −K
Proposed (15) KM +K2 +K + 3 KM +K2 −K

and

(UiU
∗
i + δ(i)I)−1 = Vi(Λi + δ(i)I)−1V ∗

i . (22)

Using the eigen-decomposition of UiU
∗
i and (22), the

following holds:

A∗A =
(
I − μViΛ

′
iV

∗
i

)∗ (
I − μViΛ

′
iV

∗
i

)

= I − 2μViΛ
′
iV

∗
i + μ2ViΛ

′
i

2
V ∗
i (23)

where Λ
′
i = Λi(Λi + δ(i)I)−1. So, it holds that

I −A∗A = μViΛ
′
i(2− μΛ

′
i)V

′
i . (24)

To satisfy (I −A∗A) is positive-definite, we find

2− μΛ
′
i = 2− μΛi(Λi + δ(i)I)−1

= 2− μ diag

(
λo(i)

λo(i) + δ(i)
, · · · , λK−1(i)

λK−1(i) + δ(i)

)
> 0.(25)

Then, we get the lower bound of the regularization parameter

for the stability of the proposed algorithms as

δmin > λmax(i)
(μ
2
− 1

)
, (26)

where λmax(i) is a maximum value of λk(i) with 1 ≤ k ≤
K − 1.

E. Computational Complexity

Table I lists the number of multiplications, additions of

the conventional R-APA and the computation of the variable

regularization parameter at each instant. We know that the

additional costs required to obtain variable regularization

parameter are low compared to overall complexity of the

conventional R-APA.

III. EXPERIMENTAL RESULTS

We illustrate the performance of the proposed algorithms by

carrying out computer simulations in a channel identification

scenario. The unknown channel H(z) has 16 taps and is

randomly generated. The adaptive filter and the unknown

channel are assumed to have the same number of taps. A

Gaussian distributed signal is used for the input signal. The

input signal is obtained by filtering a white, zero-mean.

Gaussian random sequence through a first-order system

G(z) = 1/(1 − 0.9z−1). The signal-to-noise ratio (SNR) is

calculated by

SNR = 10 log10

(
E[y2(i)]

E[v2(i)]

)
, (27)

where y(i) = uiw
◦.
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Fig. 1 Plot of MSD curves of the proposed APAs and R-APA (K=8)

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Iteration

M
S

D
 (

dB
)

(a) R−APA, δ = 0.001
(b) R−APA, δ = 30
(c) Proposed I (Scalar)
(d) Proposed II (Multiple)

(a) δ = 0.001

(b) δ = 30

(c) Proposed (Scalar)

(d) Proposed (Multiple)

Fig. 2 Plot of MSD curves of the proposed APAs and R-APA (K=4)

The measurement noise v(i) is added to y(i) such that SNR

= 30dB. The mean square deviation (MSD), E‖w◦ − wi‖2,

is taken and averaged over 100 independent trials. The initial

value δj(0) is set to 0.001 and δmin is chosen to 0.0001 for

all experiments.

In Fig. 1, we show the MSD curves for K = 8, μ = 0.5,

and ρ = 1.0. Dashed lines indicate the results of R-APA with

fixed regularization parameters where we choose δ = 0.001
and 30. As can be seen, the proposed R-APAs have the faster

convergence and the lower misadjustment error. In addition,

the proposed R-APA with multiple regularization parameter

has a improved performance than with common regularization

parameter as expected. In Fig. 2, we choose K = 4, μ = 0.5,

and ρ = 0.9. A similar result of Fig. 1 is observed in Fig. 2.

IV. CONCLUSION

We have proposed two R-APAs with variable regularization

parameter. The regularization parameter is modified to

minimized the given cost function using a gradient descent

based approach. By optimizing the regularization parameter at

each instant, the proposed algorithms achieve the performance

improvement compared to the conventional R-APA. In

addition, the proposed method gives birth to an efficient and
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robust update scheme for the regularization parameter by

introducing the normalized gradient. Through experiments we

show that the proposed algorithms lead to faster convergence

rate and lower misadjustment error.
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