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 
Abstract—Accurate software reliability prediction not only 

enables developers to improve the quality of software but also 
provides useful information to help them for planning valuable 
resources. This paper examines the performance of three well-known 
data mining techniques (CART, TreeNet and Random Forest) for 
predicting software reliability. We evaluate and compare the 
performance of proposed models with Cascade Correlation Neural 
Network (CCNN) using sixteen empirical databases from the Data 
and Analysis Center for Software. The goal of our study is to help 
project managers to concentrate their testing efforts to minimize the 
software failures in order to improve the reliability of the software 
systems. Two performance measures, Normalized Root Mean 
Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate 
that CART model is accurate than the models predicted using 
Random Forest, TreeNet and CCNN in all datasets used in our study. 
Finally, we conclude that such methods can help in reliability 
prediction using real-life failure datasets. 

 
Keywords—Classification, Cascade Correlation Neural Network, 

Random Forest, Software reliability, TreeNet.  

I. INTRODUCTION 

N software reliability engineering, different models have 
different predictive capabilities and there is no unique 

model in the literature, which can be applied in all 
circumstances. Some statistical methods applied to software 
reliability estimation and prediction are maximum likelihood 
estimation (MLE), least square estimation (LSE), analysis of 
variance (ANOVA), linear regression analysis (LRA) and 
logistic regression [1]-[3].  

Machine learning is an approach concerned with the design 
and development of algorithms that allow computers to evolve 
the system behavior from experience, training, analytical 
observations and other means, which results in a system that 
can continuously self-improve. The machine learning 
techniques are focused on learning automatically, recognizing 
complex patterns, and making decisions based on system 
behavior. This way, the machine is able to learn whenever it 
changes its structure, program, or data based on its input or in 
response to the external information in such a manner that it’s 
expected future performance improves [4]-[10]. 
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The data mining techniques such as Decision Trees (DTs), 
Classification and Regression Trees (CART), Random Forest 
(RF), and TreeNet have been found very effective than 
classical statistical techniques. Data mining is the process of 
extracting knowledge from large amounts of complex datasets 
[11]-[15]. 

In order to improve the quality of software systems we 
apply the regression techniques using CART, TreeNet, RF, 
and Cascade correlation neural network (CCNN) for 
predicting software reliability. However, the present challenge 
is to make prediction models even more efficient by 
incorporating a fairly new technique that can improve the 
prediction rate realistically and require less computational 
resources. Therefore, it would be interesting to see which 
particular method tends to work well and up to what extent 
quantitatively [16]-[20]. 

In this paper, we examine the comparative performance of 
three well-known and widely used data mining techniques for 
predicting software reliability that can help researchers to 
build an adequate body of knowledge in order to draw 
stronger conclusions leading to better theories. We briefly 
focus on two main issues: (i) how accurately and effectively 
data mining techniques can be utilized for predicting software 
reliability in real-life situations (ii) Correlate various 
commonly used data mining techniques for software reliability 
predictions since their performance varies when applied to 
different size failure datasets in realistic operating context. 

The contribution of our paper can be summarized as 
follows. First, we present a comparative analysis of the 
CART, TreeNet, RF, and CCNN from a methodological and 
applied perspective. Second, we empirically compare the 
performance of the models predicted with the help of sixteen 
datasets from the DACS using two commonly used data 
mining tools (DTReg and Salford predictive modeling 
system). Third, we study various pertinent issues (availability 
of failure data, parameter estimation, and the type of 
assumptions made for modelling) of real-life projects.  

The rest of the article is organized as follows: In Section II, 
we discuss the significant work from the literature. In Section 
III, we discuss the research background and in Section IV, we 
describe the data mining techniques applied to predicting 
software reliability in detail. The experimental results and 
observations of our study are discussed in Section V. Finally, 
the conclusions are drawn in Section VI. 

II.  RELATED WORK  

Several data mining techniques for classification and 
regression such as Decision Trees (DTs), Artificial Neural 
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Networks (ANNs), and Support Vector Machines (SVMs) 
have been applied to predict software reliability in practice. 
The major challenges of these methods do not lie in their 
technical soundness, but their validity and applicability in real 
world applications remain open issues particularly in web-
based environments [7], [8], [10]. 

The effectiveness of neural network based prediction 
models depends on the behavior of the dataset which may be 
of fluctuating nature in some cases. Therefore, ANNs may 
overfit the results while dealing with real-life unknown large 
datasets. Overfitting occurs usually, when the parameters of a 
model are tuned in such a way that the model fits the training 
data pretty well but it has poor accuracy when applied on 
separate unknown dataset, which is not used for training the 
model. 

SVM is a new methodology based on statistical learning 
theory, which has been successfully applied to solve nonlinear 
regression and time series problems. SVM can be represented 
as a set of related supervised learning methods that analyze 
data and recognize patterns, used for classification and 
regression analysis. The applications of SVM in place of 
traditional techniques have shown remarkable improvement in 
the prediction of software reliability in recent years. The 
design of SVM is based on the extraction of a subset of the 
training data that serves as support vectors and therefore 
represents a stable characteristic of the data. On the other 
hand, Decision Trees have been applied in various data mining 
applications for classification purposes and other related 
disciplines [8], [12], [14], [15].  

The RF is an ensemble of decision trees, with improved 
performance developed by Leo Breiman at the University of 
California Berkeley [2]. The RF is comprised of many 
individual trees designed to operate quickly over large 
complex datasets. The main advantage of using DTs is their 
descriptive nature, which allows practitioners to interpret the 
model’s decision easily in comparison to other machine 
learning techniques like ANNs and SVMs. Although, RF and 
CCNN have shown their strengths in various real-life 
applications, these methods have rarely been used for 
predicting software reliability to the best of our knowledge. 
Thus it is worthwhile to include these techniques for the 
predictions of software reliability in our study [15], [24]-[26]. 

The CCNN is a self-organizing network that deals with the 
input and output neurons only. The neurons are selected from 
a pool of candidates and added to the hidden layer during the 
training process. Moreover, CCNN was developed in an 
attempt to overcome certain limitations of back-propagation 
learning algorithm. One of the main limitations of back 
propagation neural network (BPNN) is the slow learning rate 
from the training set of input-output samples due to step size 
and moving target. In the CCNN, input nodes and hidden 
nodes are connected directly to the output with adjustable 
weighted connections leading to improved performance of the 
network [17]-[19]. 

The CART is a commonly used algorithm that can handle 
various type of input & output data (nominal, ordinal or 
continuous) in the prediction model. In comparison to other 

methods used in our study, TreeNet is insensitive to data 
errors and takes very little time for pre-processing the data to 
handle the missing values. This way, TreeNet is more useful 
to resist the overtraining and therefore it is faster than neural 
network models [14]-[17]. However, in order to make the 
generalization of such techniques, more similar data-based 
empirical studies that are capable of being verified by 
observations and experiments must be carried out. 

III. RESEARCH BACKGROUND 

The primary objective of developing a software reliability 
prediction model is to apply for making decisions about the 
software such as whether the product can be released in its 
present state or we require further testing to improve the 
quality of software systems. The data mining techniques 
(CART, TreeNet and RF) are found very useful and can be 
utilized as powerful tools for making accurate decision than 
statistical techniques like LRA on our test data. 

A. Dependent and Independent Variables  

Failure rate is the dependent variable used in our study 
applied to assess and predict the reliability of software 
systems. As the number of remaining faults change, the failure 
rate of the program changes accordingly. The dependent 
variable was predicted based on the number of failures 
detected during the testing phase. Days of testing time is the 
independent variable taken in terms of calendar time notations 
(number of weeks/days/Hrs/min./seconds). 

B. Empirical Data Collection  

The sanctity of collected failure data depends on how 
accurately we observe the failure data in a realistic 
environment of modern computing systems. The failure 
datasets used of various projects are extracted from the 
Software Life Cycle Empirical/Experience Database (SLED).  

C. Evaluation Criteria for Model 

In order to analyze and compare the performance of the data 
mining methods presented in our study, we apply various 
statistics such as R-sq. MAE, RMSE and NRMSE [19]-[23] 
computed as follows: 

1. R-square (R-sq.) 

R-square is the correlation between the output and target 
values. This statistical measure shows how well the predicted 
values from a prediction model fit with the observed value of 
real-life data.  

2. Mean Absolute Error (MAE) 

1
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MAE is the quantity used to measure how close predictions 

are to the actual outcomes.  

3. Root Mean Square Error (RMSE) 
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where n is the number of observations for corresponding 
predicted and observed values of the model.  

4. Normalized Root Mean Square Error (NRMSE) 
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NRMSE is a non-dimensional form of the RMSE, which is 

normalized form of RMSE to the range of the observed data. 

D.  Experimental Setup 

This section presents the experimental set up to illustrate 
how data mining techniques are used as an approximation tool 
for predicting software reliability quantitatively. The number 
of failures is defined as the target variable and the days of 
failure is taken as predictor to assess the reliability of given 
software systems. Two commonly used data mining tools 
namely DTReg and Salford-system predictive tool are applied 
for training and testing the capability of each prediction model 
presented in our study [16]-[18]. 

IV. RESEARCH METHODOLOGY 

In this section, we discuss in brief the regression techniques 
using CART, TreeNet, RF, and CCNN for predicting software 
reliability. These data mining methods can be utilized to deal 
with the issues of how to build and design computer programs 
that improve their performance for some specific task such as 
reliability prediction based on statistical observations. The 
performance analysis of various data mining methods are 
discussed and illustrated in Tables I-VIII summarizing how 
accurately the data mining techniques are useful and able to 
predict the reliability of software systems based on past 
failures. 

A. CART 

The classification and regression tree generates a binary 
decision tree. Even if the input variable is nominal and has 
more than two categories then it groups different categories in 
one branch. However, when the input variable is continuous 
(testing time in our study), it still generates two branches 
associating a set of values limited by the relational operators 
to each one of them such as less than or equal to or greater 
than a certain value. Thus, CART is a non-parametric 
statistical method used for analyzing classification tasks either 
from categorical or continuous dependent variables. If the 
dependent variable is categorical then CART produces a 
classification tree otherwise a regression tree in case of when 
the dependent variable is continuous [24]-[27].  

In data mining, decision trees are used as the predictive 
model mapping observations of an item to its target values. In 
a tree structure, the leaves represent classification and 
branches represent conjunctions of features that lead to the 
classification. Therefore, a decision tree can be utilized as a 
data mining model for predicting software reliability. Thus, 
CART is a decision-tree tool in data mining, which can be 
applied for pre-processing the data and predictive modeling. 

The CART has the capability of searching important patterns 
and relationships in highly complex datasets also. Thus, 
CART is capable to generate more reliable prediction results 
from past failure datasets of real-life projects. The CART can 
handle missing values also by substituting surrogate splitters 
[2]. We employed CART 6.0, Windows based decision tree 
tool for data mining & predictive modeling, and data pre-
processing which can be found at http://www.salford-
systems.com [16]. Tables I and II illustrate the architecture 
and performance measurements of CART for the assessment 
and prediction of software reliability using sixteen failure 
datasets in terms of R-sq., MAE, RMSE, and normalized 
RMSE. 

 
TABLE I 

ARCHITECTURE OF CART 

Parameters CART Structure 

Initial value of the complexity parameters  0 

Construction rule Least square method 

Estimation method 10-fold cross-validation 

Number of predictor variable 1 

Minimum size below which node will not be split  10 

Minimum size for a child node  1 
Maximum no. of cases allowed in the learning 
sample 

Maximum rows 

Maximum number of surrogates used for missing 
values 

1 

 
TABLE II 

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING CART 

Data Set R-sq. MAE RMSE Normalized RMSE 

1 0.9968 4.9117 2.2162 0.0164 

2 0.9837 1.7037 1.9860 0.0375 

3 0.9673 1.6315 1.9823 0.0536 

4 0.9836 1.6792 1.9546 0.0376 

5 0.9999 1.7689 2.1319 0.0026 

6 0.9898 1.7808 2.1261 0.0295 

14C 0.9382 2.2222 2.5819 0.0738 

17 0.9376 2.3684 2.7386 0.0740 

27 0.9755 1.5365 1.8511 0.0463 

40 0.9959 1.5940 1.8628 0.0186 

SS1A 0.9964 1.6607 1.9387 0.0175 

SS1B 0.9997 1.5600 1.8421 0.0049 

SS1C 0.9990 2.1660 2.5142 0.0091 

SS2 0.9989 1.5104 1.7603 0.0092 

SS3 0.9991 2.0323 2.3798 0.0086 

SS4 0.9989 1.5510 1.7999 0.0093 

B. TreeNet 

A TreeNet model consists of large number of small trees. 
Each tree usually contains up to six terminal nodes and 
contributes to the overall model [2]-[5]. Moreover, each tree is 
responsible to contribute some portion of the overall model 
and final prediction result of the model is the sum up of all 
individual tree prediction outcomes. The TreeNet models are 
capable of handling data quality issues such as tracking 
missing values, ignorance of suspicious data values, selection 
of variables (predictors) and detecting interactions among 
them.  
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The best part of TreeNet model is, not overly sensitive to 
the data errors and requires much less time for data 
preparation and pre-processing of missing values. 
Furthermore, TreeNet adaptively deals with errors while 
selecting target variables. The TreeNet structure is 
implemented using CART 6.0, a Salford Predictive Modeling 
tool [16], [18]. 

Tables III and IV illustrate the architecture and performance 
measurements of TreeNet for various datasets in terms of R-
sq., MAE, RMSE, and normalized RMSE. 

 
TABLE III 

ARCHITECTURE OF TREE-NET  

Parameters TreeNet structure 

Maximum trees in the forest 200 

Maximum splitting level 50 

Maximum node size to split 2 

Maximum categories for continuous predictors 200 

Maximum depth of tree in forest variable (10-20) 

Variable weight Equal 

Number of predictor variable 1 

 
TABLE IV 

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING TREE-NET 

Data Set R-sq. MAE RMSE Normalized RMSE 

1 0.9698 5.0861 7.1330 0.0528 

2 0.8708 4.9546 6.2564 0.1180 

3 -3.0737 9.6661 11.1057 0.3002 

4 0.8632 5.1075 6.4152 0.1234 

5 0.9776 29.0297 35.8190 0.0432 

6 0.9264 4.6885 6.6804 0.0928 

14C -1.6153 9.1141 10.4418 0.2983 

17 -3.0737 9.6382 11.0988 0.3000 

27 -3.1180 10.3195 11.8811 0.2970 

40 0.9611 4.1551 6.3891 0.0639 

SS1A 0.9649 4.3469 6.5697 0.0592 

SS1B 0.9774 13.2538 16.3981 0.0438 

SS1C 0.9773 9.8252 12.1157 0.0439 

SS2 0.9766 6.7597 8.5669 0.0449 

SS3 0.9772 9.7786 12.0563 0.0435 

SS4 0.9763 6.8680 8.7606 0.0452 

C. Random Forest 

The RF consists of tree predictors that are dependent on the 
values of random vectors sampled independently with same 
distribution for all trees in the forest [2]-[8]. The 
generalization error of the forest tree classifiers depends on the 
strength of individual tree in the forest and the correlation 
between them. The random forests are designed to operate 
quickly over large datasets by using random samples to build 
each tree in the forest. RF is composed of unpruned regression 
trees created by using bootstrap samples of the training data 
and random feature selection in tree induction. The prediction 
accuracy of RF is achieved by averaging the predictions of the 
ensembles.  

Thus, random forest tree is the collection of decision trees 
whose predictions are combined to make the overall prediction 
for the forest. Therefore, decision trees can be applied for 
predicting software reliability to decide the predictor like 

mean time to failure (MTTF) in terms of the target value from 
the set of input values. The internal nodes of a decision tree 
denote different attributes and the branches between nodes 
represent the possible values these attributes can have in the 
observed samples [2], [14], [16], [18], [26]. 

In RF, a large number of trees are grown in parallel 
independently and they do not interact until all the trees are 
built up completely. The RF models produce high accuracy 
over single decision tree model. We implement the random 
forest method using DTReg [16]. Tables V and VI show the 
architecture and performance measurements of RF for various 
datasets in terms of R-sq, MAE, RMSE, and normalized 
RMSE. 

 
TABLE V 

ARCHITECTURE OF RANDOM FOREST 

Parameters Random Forest structure 

Maximum Number of trees  200 

Maximum splitting level 100 

Maximum node size to split 2 

Maximum categories for continuous predictors 200 

Maximum depth of tree in forest variable (10-20) 

Variable weight Equal 

Number of predictor variable 1 

 
TABLE VI 

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING RANDOM 

FOREST 

Data Set R-sq. MAE RMSE Normalized RMSE 

1 0.9910 625.4292 5.9677 0.0442 

2 0.9826 141.0810 3.1494 0.0594 

3 0.9593 106.7763 3.2872 0.0888 

4 0.9711 157.0853 3.9327 0.0756 

5 0.9978 1158.960 18.837 0.0227 

6 0.9804 264.9911 4.8375 0.0672 

14C 0.9417 114.9851 3.9966 0.1142 

17 0.9576 111.9452 3.7959 0.1026 

27 0.9586 125.7674 3.8419 0.0960 

40 0.9865 414.5744 5.6581 0.0566 

SS1A 0.9911 493.2970 5.4423 0.0490 

SS1B 0.9964 364.7817 11.118 0.0297 

SS1C 0.9947 294.4492 10.1142 0.0366 

SS2 0.9931 151.6904 7.5547 0.0396 

SS3 0.9947 2048.107 9.8371 0.0355 

SS4 0.9953 1009.332 6.7349 0.0347 

D. Cascade Correlation Neural Network  

Artificial neural networks consist of several processing 
nodes analogous to neurons in the brain. Each node has a 
function associated with it and a set of local parameters, 
determining output of the node for a given set of input. 
Cascade correlation neural networks (CCNN) are based on 
supervising learning algorithms [17], [27].  

The CCNN is a robust network model capable of producing 
accurate results with small variation in the adjustment of 
parameters. Although, Back-propagation neural network is 
widely used multi-layer feed forward network. However, the 
disadvantage of multi-layer feed forward networks using back 
propagation is that number of hidden layers and neurons in the 
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network are problem specific. This varies from task to task 
and hence cannot be utilized for generalization. Thus, if large 
number of hidden neurons is used then the network will learn 
irrelevant details during the training and once trained it does 
not generalize well. Alternatively, if the size of the network is 
very small then it will not be able to learn from the training set 
accurately. Therefore, we require such a network which could 
determine the size for a network dynamically starting with a 
minimal network and then adding hidden neurons and 
connections as required. Thus, CCNN is an alternative viable 
solution, which helps in overcoming the shortcomings of 
BPNN by adjusting the number of hidden layers dynamically 
during the learning phase. The CCNN model is implemented 
using DTReg [16]-[18]. Tables VII and VIII show the 
architecture and performance measure of CCNN for various 
datasets in terms of R-sq., MAE, RMSE, and normalized 
RMSE. 

 
TABLE VII 

ARCHITECTURE OF CCNN 

Parameters CCNN Structure 

Maximum neurons in hidden layer  50 

 Hidden neuron kernel function Sigmoid and Gaussian 

Output neuron kernel function Sigmoid 

Validation method Cross validation 

Number of cross-validation folds 10 

Number of predictor variables 1 

Number of neurons in input layer 1 

Number of neurons in output layer  1 

 
TABLE VIII 

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING CCNN 

Data Set R-sq. MAE RMSE Normalized RMSE 

1 0.9978 1.9188 2.5728 0.0191 

2 0.9979 0.8082 0.9862 0.0186 

3 0.9895 1.0356 1.5825 0.0428 

4 0.9972 0.9172 1.1327 0.0218 

5 0.9996 5.0218 6.3647 0.0077 

6 0.9977 1.1608 1.4255 0.0198 

14C 0.9971 0.4664 0.7782 0.0222 

17 0.9974 0.6367 0.7900 0.0214 

27 0.9968 0.7656 0.9344 0.0234 

40 0.9981 1.4842 1.7825 0.0178 

SS1A 0.9986 1.3032 1.6736 0.0151 

SS1B 0.9794 14.3782 22.8095 0.0610 

SS1C 0.9993 2.3560 2.9762 0.0108 

SS2 0.9983 2.5025 3.1829 0.0167 

SS3 0.9956 5.5567 7.4658 0.0270 

SS4 0.9988 2.1166 2.7746 0.0143 

E. Training and Validation Method  

The data mining techniques applied for predicting software 
reliability predictions have been validated using sixteen failure 
datasets taken from the DACS. The cumulative number of 
failures xi detected during the testing at time ti, is taken as the 
target variable where ti is the predictor. Each dataset is divided 
into two parts: training and testing data. The training data is 
then applied to the prediction model for predicting software 
reliability.  

Separate training and validation dataset are desired for 
testing the accuracy of predicting models. However, when the 
database used for modeling is small such as the datasets 2, 3, 
4, 14C, 17 and 27 used in our study, we are not able to spare a 
large portion of data for the testing, thus testing is performed 
on relatively small samples. Therefore, to maximize the 
utilization of each dataset we apply k-cross validation, an 
alternative procedures that allows more of the data to be used 
for fitting and testing. Using k-cross validation, the entire 
dataset is randomly divided into k subsets (here k=10) and for 
each iteration one of the k subsets is used as the training data 
and the remaining subsets are used to validate the model for 
predicting software reliability [8], [12], [14], [25], [26]. 

V. ANALYSIS RESULTS 

In this section, we present summary of the results for all 
sixteen data sets using CART, TreeNet, RF and CCNN in 
terms of R-sq, MAE, and RMSE. 

A. Observations  

Some specific observations of our study for predicting 
software reliability using the data mining techniques are 
discussed as follows:  
1. Based on the results achieved through experiments we 

conducted, it is observed that designing the models for 
reliability growth of varying complexity for a given data 
set using CCNN is more easy. However, the effectiveness 
of the CCNN model depends on behavior of the dataset, 
which is basically of fluctuating nature. The CCNN 
suffers from overfitting the results while dealing with 
real-life previously unseen large failure datasets. Thus, 
Cascade correlation neural network based models face the 
problem of learning from the dynamic environment, 
which requires a larger sample size for training and 
testing the model together with large no. of independent 
variables.  

2. It can be easily shown from Tables I-VIII that the CART 
and RF fit very well in terms of MAE and RMSE. Thus, 
CART and RF can approximate the continuous function 
accurately, which implies that such methods may be 
employed effectively for estimation and prediction of 
cumulative failures observed by time t in software 
reliability modeling. On other hand, the TreeNet method 
does not make accurate predictions in terms of R-sq., 
MAE, RMSE and therefore such methods are not found 
suitable for current datasets applied in our study. 
However, it would be interesting to see the impact of 
other similar studies on updated large failure dataset of 
real-life projects before making such generalization.  

3. The robustness and validity of the CART, RF, and CCNN 
models make it easier for real-world applications to model 
complex failure phenomena of predicting software 
reliability accurately. Moreover, the CART and CCNN 
models are more adaptive to the modeling of nonlinear 
functional relationships, which are difficult to model with 
other classical techniques (LR) of predicting software 
reliability in practice. 
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4. The performance measurement of the CART and CCNN 
generalize well even in high dimensional spaces under 
small training datasets. Therefore, software reliability 
prediction models can be built much earlier with these 
methods than other conventional techniques with 
relatively good performance achieved. However, the 
TreeNet model makes relatively accurate predictions for 
the training data resulting in better accuracy on the 
training data but poor performance on previously unseen 
failure datasets. Here, we have applied DTReg and 
Salford predictive modeling tools that include an over 
fitting control facility to prevent over fitting.  

5. From the observed results we conclude that CART 
provides more reliable performance and accurate results 
than other data mining algorithms presented in our study. 
We observed that the CCNN is another viable alternative 
model which performs better in comparison to other data 
mining techniques. Since, the supervised learning 
algorithms are used to create and install hidden neurons 
for maximizing the magnitude of correlation between 
existing and new neurons. This way, CCNN is capable of 
learning very quickly, determines the size and topology 
dynamically to minimize the residual error signals leading 
to the more accurate prediction result of the model. 

B. Discussions 

The performance measurement of the data mining 
techniques (CART, TreeNet, RF, and CCNN) in terms of R-
sq, MAE, RMSE and NRMSE values corresponding to all 
sixteen failure data-sets are summarized as follows. The 
correlation coefficient values vary from 86% to 99% for the 
majority of the datasets except dataset 3, dataset 14C, 17, and 
dataset 27 using the TreeNet model. This way, the relationship 
between predicted values and actual values are correlated 
strongly, suggesting high degree of relationship between 
predicted and actual values. Experimentally, we found that a 
statistic is biased if, it consistently over or underestimates the 
parameter it is estimating. A statistic is positively biased if it 
tends to overestimate the parameter and a statistic is 
negatively biased if it tends to underestimate the parameter.  

The prediction results of CART is fairly good in terms of 
normalized RMSE for all datasets lying between 0.0026 
(minimum for dataset 5 having maximum failure records) and 
0.0740 (maximum for dataset 17) suggesting that the model 
predicts well for large size failure datasets shown in Fig. 1. 
However, the performance measurement of the TreeNet and 
RF in terms of NRMSE is relatively good but very 
inconsistently and over fits in terms of MAE and RMSE 
shown in Figs. 2 and 3.  

Another positive outcome of our study is the performance 
measurement of the CCNN in terms of NRMSE which lies 
between 0.0191 and 0.0610 suggesting that the model predicts 
well but very inconsistently in terms of MAE and RMSE. That 
is, CCNN shows very encouraging results and makes it an 
alternative choice, which outperformed the model, predicted 
using the TreeNet and random forest methods shown in Fig. 4.  

The CART model applied to predicting software reliability 
was found to be quite close to the target values. This illustrates 
that the model will not collapse when applied to unknown 
failure datasets of a realistic environment. Finally, based on 
overall performance we observe that the CART method is 
more appropriate and capable of yielding more accurate 
results and therefore it can be utilized as a tool for predicting 
software reliability in real-life applications. Moreover, CCNN 
was found to be alternative choice, which can be used in 
modeling complex non-linear relationships more effectively 
such as in predicting software reliability. Fig. 5 is the 
graphical representation of overall performance analysis of the 
data mining techniques presented in our study for predicting 
software reliability.  

C. Threats to Validity 

The present study for software reliability prediction using 
the data mining techniques has certain limitations, which need 
to be addressed thoroughly before deployment in practice. 
Some technical/legal/social and engineering constraints of our 
study are as follows. First, the measures could not be 
evaluated over updated and current failure datasets due to the 
lack of empirical software failure data of modern computing 
systems. Therefore, the prediction and assessment capability 
of our approach across different organizations remains an 
open issue for the acceptance of such models. Second, the 
performance measures of various data mining algorithms 
applied to software reliability prediction depends on the 
representation of software failure data. Further, the failure 
datasets available in literature is not updated frequently 
probably due to the competitive nature of business, fear of 
losing customers and other legal issues of software industry. 
Therefore, more similar studies need to be carried out with 
different data sets to give generalized results. 

VI. CONCLUSION 

In this paper, we have examined the performance of three 
data mining techniques namely CART, TreeNet and Random 
Forest for predicting software reliability based on past failure 
data of software systems. Their effectiveness is demonstrated 
through sixteen failure datasets taken from the Data and 
Analysis Center for Software. The performance measurement 
is compared in terms of MAE and NRMSE obtained in the test 
set. From experiments conducted, we conclude that the CART 
model outperformed the model predicted using the RF, 
TreeNet and CCNN models in all datasets. The results 
obtained through CCNN are also very encouraging, which 
outperformed the model predicted using the TreeNet and RF 
methods and therefore it may be utilized as an alternative 
choice for making predictions. 

Further, we plan to replicate our study of software 
reliability prediction models by introducing some more 
intelligent machine learning algorithms applied to a large 
category of failure datasets of real life industrial software 
projects in a realistic operating context. 
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Fig. 1 The performance measurement of the CART for predicting 
Software reliability 

 

 

Fig. 2 The performance measurement of the TreeNet for predicting 
Software reliability 

 

 

Fig. 3 The performance measurement of the RF for predicting 
Software reliability 

 

 

Fig. 4 The performance measurement of the CCNN for predicting 
Software reliability 

 

 

Fig. 5 Comparative Analysis of various data mining in terms of 
NRMSE 
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