
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2041


Abstract—Accurate software reliability prediction not only

enables developers to improve the quality of software but also
provides useful information to help them for planning valuable
resources. This paper examines the performance of three well-known
data mining techniques (CART, TreeNet and Random Forest) for
predicting software reliability. We evaluate and compare the
performance of proposed models with Cascade Correlation Neural
Network (CCNN) using sixteen empirical databases from the Data
and Analysis Center for Software. The goal of our study is to help
project managers to concentrate their testing efforts to minimize the
software failures in order to improve the reliability of the software
systems. Two performance measures, Normalized Root Mean
Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate
that CART model is accurate than the models predicted using
Random Forest, TreeNet and CCNN in all datasets used in our study.
Finally, we conclude that such methods can help in reliability
prediction using real-life failure datasets.

Keywords—Classification, Cascade Correlation Neural Network,

Random Forest, Software reliability, TreeNet.

I. INTRODUCTION

N software reliability engineering, different models have
different predictive capabilities and there is no unique

model in the literature, which can be applied in all
circumstances. Some statistical methods applied to software
reliability estimation and prediction are maximum likelihood
estimation (MLE), least square estimation (LSE), analysis of
variance (ANOVA), linear regression analysis (LRA) and
logistic regression [1]-[3].

Machine learning is an approach concerned with the design
and development of algorithms that allow computers to evolve
the system behavior from experience, training, analytical
observations and other means, which results in a system that
can continuously self-improve. The machine learning
techniques are focused on learning automatically, recognizing
complex patterns, and making decisions based on system
behavior. This way, the machine is able to learn whenever it
changes its structure, program, or data based on its input or in
response to the external information in such a manner that it’s
expected future performance improves [4]-[10].

Dr Pradeep Kumar is an Associate Professor in the Department of

Computer Science & Information Technology at Maulana Azad National
Urdu University, Hyderabad (Telangana State), Pin- 500032, India (phone:
91-9959829128; e-mail: drpkumar1402@gmail.com).

Dr. Abdul Wahid is Professor & Head, Department of Computer Science
& IT at Maulana Azad National Urdu University, Hyderabad (Telangana
State), Pin- 500032, India (phone: 91-8297097786; e-mail:
wahidabdul76@yahoo.com).

The data mining techniques such as Decision Trees (DTs),
Classification and Regression Trees (CART), Random Forest
(RF), and TreeNet have been found very effective than
classical statistical techniques. Data mining is the process of
extracting knowledge from large amounts of complex datasets
[11]-[15].

In order to improve the quality of software systems we
apply the regression techniques using CART, TreeNet, RF,
and Cascade correlation neural network (CCNN) for
predicting software reliability. However, the present challenge
is to make prediction models even more efficient by
incorporating a fairly new technique that can improve the
prediction rate realistically and require less computational
resources. Therefore, it would be interesting to see which
particular method tends to work well and up to what extent
quantitatively [16]-[20].

In this paper, we examine the comparative performance of
three well-known and widely used data mining techniques for
predicting software reliability that can help researchers to
build an adequate body of knowledge in order to draw
stronger conclusions leading to better theories. We briefly
focus on two main issues: (i) how accurately and effectively
data mining techniques can be utilized for predicting software
reliability in real-life situations (ii) Correlate various
commonly used data mining techniques for software reliability
predictions since their performance varies when applied to
different size failure datasets in realistic operating context.

The contribution of our paper can be summarized as
follows. First, we present a comparative analysis of the
CART, TreeNet, RF, and CCNN from a methodological and
applied perspective. Second, we empirically compare the
performance of the models predicted with the help of sixteen
datasets from the DACS using two commonly used data
mining tools (DTReg and Salford predictive modeling
system). Third, we study various pertinent issues (availability
of failure data, parameter estimation, and the type of
assumptions made for modelling) of real-life projects.

The rest of the article is organized as follows: In Section II,
we discuss the significant work from the literature. In Section
III, we discuss the research background and in Section IV, we
describe the data mining techniques applied to predicting
software reliability in detail. The experimental results and
observations of our study are discussed in Section V. Finally,
the conclusions are drawn in Section VI.

II. RELATED WORK

Several data mining techniques for classification and
regression such as Decision Trees (DTs), Artificial Neural

Performance Evaluation of Data Mining Techniques
for Predicting Software Reliability

Pradeep Kumar, Abdul Wahid

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2042

Networks (ANNs), and Support Vector Machines (SVMs)
have been applied to predict software reliability in practice.
The major challenges of these methods do not lie in their
technical soundness, but their validity and applicability in real
world applications remain open issues particularly in web-
based environments [7], [8], [10].

The effectiveness of neural network based prediction
models depends on the behavior of the dataset which may be
of fluctuating nature in some cases. Therefore, ANNs may
overfit the results while dealing with real-life unknown large
datasets. Overfitting occurs usually, when the parameters of a
model are tuned in such a way that the model fits the training
data pretty well but it has poor accuracy when applied on
separate unknown dataset, which is not used for training the
model.

SVM is a new methodology based on statistical learning
theory, which has been successfully applied to solve nonlinear
regression and time series problems. SVM can be represented
as a set of related supervised learning methods that analyze
data and recognize patterns, used for classification and
regression analysis. The applications of SVM in place of
traditional techniques have shown remarkable improvement in
the prediction of software reliability in recent years. The
design of SVM is based on the extraction of a subset of the
training data that serves as support vectors and therefore
represents a stable characteristic of the data. On the other
hand, Decision Trees have been applied in various data mining
applications for classification purposes and other related
disciplines [8], [12], [14], [15].

The RF is an ensemble of decision trees, with improved
performance developed by Leo Breiman at the University of
California Berkeley [2]. The RF is comprised of many
individual trees designed to operate quickly over large
complex datasets. The main advantage of using DTs is their
descriptive nature, which allows practitioners to interpret the
model’s decision easily in comparison to other machine
learning techniques like ANNs and SVMs. Although, RF and
CCNN have shown their strengths in various real-life
applications, these methods have rarely been used for
predicting software reliability to the best of our knowledge.
Thus it is worthwhile to include these techniques for the
predictions of software reliability in our study [15], [24]-[26].

The CCNN is a self-organizing network that deals with the
input and output neurons only. The neurons are selected from
a pool of candidates and added to the hidden layer during the
training process. Moreover, CCNN was developed in an
attempt to overcome certain limitations of back-propagation
learning algorithm. One of the main limitations of back
propagation neural network (BPNN) is the slow learning rate
from the training set of input-output samples due to step size
and moving target. In the CCNN, input nodes and hidden
nodes are connected directly to the output with adjustable
weighted connections leading to improved performance of the
network [17]-[19].

The CART is a commonly used algorithm that can handle
various type of input & output data (nominal, ordinal or
continuous) in the prediction model. In comparison to other

methods used in our study, TreeNet is insensitive to data
errors and takes very little time for pre-processing the data to
handle the missing values. This way, TreeNet is more useful
to resist the overtraining and therefore it is faster than neural
network models [14]-[17]. However, in order to make the
generalization of such techniques, more similar data-based
empirical studies that are capable of being verified by
observations and experiments must be carried out.

III. RESEARCH BACKGROUND

The primary objective of developing a software reliability
prediction model is to apply for making decisions about the
software such as whether the product can be released in its
present state or we require further testing to improve the
quality of software systems. The data mining techniques
(CART, TreeNet and RF) are found very useful and can be
utilized as powerful tools for making accurate decision than
statistical techniques like LRA on our test data.

A. Dependent and Independent Variables

Failure rate is the dependent variable used in our study
applied to assess and predict the reliability of software
systems. As the number of remaining faults change, the failure
rate of the program changes accordingly. The dependent
variable was predicted based on the number of failures
detected during the testing phase. Days of testing time is the
independent variable taken in terms of calendar time notations
(number of weeks/days/Hrs/min./seconds).

B. Empirical Data Collection

The sanctity of collected failure data depends on how
accurately we observe the failure data in a realistic
environment of modern computing systems. The failure
datasets used of various projects are extracted from the
Software Life Cycle Empirical/Experience Database (SLED).

C. Evaluation Criteria for Model

In order to analyze and compare the performance of the data
mining methods presented in our study, we apply various
statistics such as R-sq. MAE, RMSE and NRMSE [19]-[23]
computed as follows:

1. R-square (R-sq.)

R-square is the correlation between the output and target
values. This statistical measure shows how well the predicted
values from a prediction model fit with the observed value of
real-life data.

2. Mean Absolute Error (MAE)

1

1
Pr

n

i
MAE edicted Actual

n 
  (1)

MAE is the quantity used to measure how close predictions

are to the actual outcomes.

3. Root Mean Square Error (RMSE)
2

1

(Pr)n

i

edicted Actual
RMSE

n


  (2)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2043

where n is the number of observations for corresponding
predicted and observed values of the model.

4. Normalized Root Mean Square Error (NRMSE)

2

1

2

1

(Pr)

Pr

n

i
n

i

edicted Actual
NRMSE

edicted





 


 (3)

NRMSE is a non-dimensional form of the RMSE, which is

normalized form of RMSE to the range of the observed data.

D. Experimental Setup

This section presents the experimental set up to illustrate
how data mining techniques are used as an approximation tool
for predicting software reliability quantitatively. The number
of failures is defined as the target variable and the days of
failure is taken as predictor to assess the reliability of given
software systems. Two commonly used data mining tools
namely DTReg and Salford-system predictive tool are applied
for training and testing the capability of each prediction model
presented in our study [16]-[18].

IV. RESEARCH METHODOLOGY

In this section, we discuss in brief the regression techniques
using CART, TreeNet, RF, and CCNN for predicting software
reliability. These data mining methods can be utilized to deal
with the issues of how to build and design computer programs
that improve their performance for some specific task such as
reliability prediction based on statistical observations. The
performance analysis of various data mining methods are
discussed and illustrated in Tables I-VIII summarizing how
accurately the data mining techniques are useful and able to
predict the reliability of software systems based on past
failures.

A. CART

The classification and regression tree generates a binary
decision tree. Even if the input variable is nominal and has
more than two categories then it groups different categories in
one branch. However, when the input variable is continuous
(testing time in our study), it still generates two branches
associating a set of values limited by the relational operators
to each one of them such as less than or equal to or greater
than a certain value. Thus, CART is a non-parametric
statistical method used for analyzing classification tasks either
from categorical or continuous dependent variables. If the
dependent variable is categorical then CART produces a
classification tree otherwise a regression tree in case of when
the dependent variable is continuous [24]-[27].

In data mining, decision trees are used as the predictive
model mapping observations of an item to its target values. In
a tree structure, the leaves represent classification and
branches represent conjunctions of features that lead to the
classification. Therefore, a decision tree can be utilized as a
data mining model for predicting software reliability. Thus,
CART is a decision-tree tool in data mining, which can be
applied for pre-processing the data and predictive modeling.

The CART has the capability of searching important patterns
and relationships in highly complex datasets also. Thus,
CART is capable to generate more reliable prediction results
from past failure datasets of real-life projects. The CART can
handle missing values also by substituting surrogate splitters
[2]. We employed CART 6.0, Windows based decision tree
tool for data mining & predictive modeling, and data pre-
processing which can be found at http://www.salford-
systems.com [16]. Tables I and II illustrate the architecture
and performance measurements of CART for the assessment
and prediction of software reliability using sixteen failure
datasets in terms of R-sq., MAE, RMSE, and normalized
RMSE.

TABLE I

ARCHITECTURE OF CART

Parameters CART Structure

Initial value of the complexity parameters 0

Construction rule Least square method

Estimation method 10-fold cross-validation

Number of predictor variable 1

Minimum size below which node will not be split 10

Minimum size for a child node 1
Maximum no. of cases allowed in the learning
sample

Maximum rows

Maximum number of surrogates used for missing
values

1

TABLE II

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING CART

Data Set R-sq. MAE RMSE Normalized RMSE

1 0.9968 4.9117 2.2162 0.0164

2 0.9837 1.7037 1.9860 0.0375

3 0.9673 1.6315 1.9823 0.0536

4 0.9836 1.6792 1.9546 0.0376

5 0.9999 1.7689 2.1319 0.0026

6 0.9898 1.7808 2.1261 0.0295

14C 0.9382 2.2222 2.5819 0.0738

17 0.9376 2.3684 2.7386 0.0740

27 0.9755 1.5365 1.8511 0.0463

40 0.9959 1.5940 1.8628 0.0186

SS1A 0.9964 1.6607 1.9387 0.0175

SS1B 0.9997 1.5600 1.8421 0.0049

SS1C 0.9990 2.1660 2.5142 0.0091

SS2 0.9989 1.5104 1.7603 0.0092

SS3 0.9991 2.0323 2.3798 0.0086

SS4 0.9989 1.5510 1.7999 0.0093

B. TreeNet

A TreeNet model consists of large number of small trees.
Each tree usually contains up to six terminal nodes and
contributes to the overall model [2]-[5]. Moreover, each tree is
responsible to contribute some portion of the overall model
and final prediction result of the model is the sum up of all
individual tree prediction outcomes. The TreeNet models are
capable of handling data quality issues such as tracking
missing values, ignorance of suspicious data values, selection
of variables (predictors) and detecting interactions among
them.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2044

The best part of TreeNet model is, not overly sensitive to
the data errors and requires much less time for data
preparation and pre-processing of missing values.
Furthermore, TreeNet adaptively deals with errors while
selecting target variables. The TreeNet structure is
implemented using CART 6.0, a Salford Predictive Modeling
tool [16], [18].

Tables III and IV illustrate the architecture and performance
measurements of TreeNet for various datasets in terms of R-
sq., MAE, RMSE, and normalized RMSE.

TABLE III

ARCHITECTURE OF TREE-NET

Parameters TreeNet structure

Maximum trees in the forest 200

Maximum splitting level 50

Maximum node size to split 2

Maximum categories for continuous predictors 200

Maximum depth of tree in forest variable (10-20)

Variable weight Equal

Number of predictor variable 1

TABLE IV

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING TREE-NET

Data Set R-sq. MAE RMSE Normalized RMSE

1 0.9698 5.0861 7.1330 0.0528

2 0.8708 4.9546 6.2564 0.1180

3 -3.0737 9.6661 11.1057 0.3002

4 0.8632 5.1075 6.4152 0.1234

5 0.9776 29.0297 35.8190 0.0432

6 0.9264 4.6885 6.6804 0.0928

14C -1.6153 9.1141 10.4418 0.2983

17 -3.0737 9.6382 11.0988 0.3000

27 -3.1180 10.3195 11.8811 0.2970

40 0.9611 4.1551 6.3891 0.0639

SS1A 0.9649 4.3469 6.5697 0.0592

SS1B 0.9774 13.2538 16.3981 0.0438

SS1C 0.9773 9.8252 12.1157 0.0439

SS2 0.9766 6.7597 8.5669 0.0449

SS3 0.9772 9.7786 12.0563 0.0435

SS4 0.9763 6.8680 8.7606 0.0452

C. Random Forest

The RF consists of tree predictors that are dependent on the
values of random vectors sampled independently with same
distribution for all trees in the forest [2]-[8]. The
generalization error of the forest tree classifiers depends on the
strength of individual tree in the forest and the correlation
between them. The random forests are designed to operate
quickly over large datasets by using random samples to build
each tree in the forest. RF is composed of unpruned regression
trees created by using bootstrap samples of the training data
and random feature selection in tree induction. The prediction
accuracy of RF is achieved by averaging the predictions of the
ensembles.

Thus, random forest tree is the collection of decision trees
whose predictions are combined to make the overall prediction
for the forest. Therefore, decision trees can be applied for
predicting software reliability to decide the predictor like

mean time to failure (MTTF) in terms of the target value from
the set of input values. The internal nodes of a decision tree
denote different attributes and the branches between nodes
represent the possible values these attributes can have in the
observed samples [2], [14], [16], [18], [26].

In RF, a large number of trees are grown in parallel
independently and they do not interact until all the trees are
built up completely. The RF models produce high accuracy
over single decision tree model. We implement the random
forest method using DTReg [16]. Tables V and VI show the
architecture and performance measurements of RF for various
datasets in terms of R-sq, MAE, RMSE, and normalized
RMSE.

TABLE V

ARCHITECTURE OF RANDOM FOREST

Parameters Random Forest structure

Maximum Number of trees 200

Maximum splitting level 100

Maximum node size to split 2

Maximum categories for continuous predictors 200

Maximum depth of tree in forest variable (10-20)

Variable weight Equal

Number of predictor variable 1

TABLE VI

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING RANDOM

FOREST

Data Set R-sq. MAE RMSE Normalized RMSE

1 0.9910 625.4292 5.9677 0.0442

2 0.9826 141.0810 3.1494 0.0594

3 0.9593 106.7763 3.2872 0.0888

4 0.9711 157.0853 3.9327 0.0756

5 0.9978 1158.960 18.837 0.0227

6 0.9804 264.9911 4.8375 0.0672

14C 0.9417 114.9851 3.9966 0.1142

17 0.9576 111.9452 3.7959 0.1026

27 0.9586 125.7674 3.8419 0.0960

40 0.9865 414.5744 5.6581 0.0566

SS1A 0.9911 493.2970 5.4423 0.0490

SS1B 0.9964 364.7817 11.118 0.0297

SS1C 0.9947 294.4492 10.1142 0.0366

SS2 0.9931 151.6904 7.5547 0.0396

SS3 0.9947 2048.107 9.8371 0.0355

SS4 0.9953 1009.332 6.7349 0.0347

D. Cascade Correlation Neural Network

Artificial neural networks consist of several processing
nodes analogous to neurons in the brain. Each node has a
function associated with it and a set of local parameters,
determining output of the node for a given set of input.
Cascade correlation neural networks (CCNN) are based on
supervising learning algorithms [17], [27].

The CCNN is a robust network model capable of producing
accurate results with small variation in the adjustment of
parameters. Although, Back-propagation neural network is
widely used multi-layer feed forward network. However, the
disadvantage of multi-layer feed forward networks using back
propagation is that number of hidden layers and neurons in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2045

network are problem specific. This varies from task to task
and hence cannot be utilized for generalization. Thus, if large
number of hidden neurons is used then the network will learn
irrelevant details during the training and once trained it does
not generalize well. Alternatively, if the size of the network is
very small then it will not be able to learn from the training set
accurately. Therefore, we require such a network which could
determine the size for a network dynamically starting with a
minimal network and then adding hidden neurons and
connections as required. Thus, CCNN is an alternative viable
solution, which helps in overcoming the shortcomings of
BPNN by adjusting the number of hidden layers dynamically
during the learning phase. The CCNN model is implemented
using DTReg [16]-[18]. Tables VII and VIII show the
architecture and performance measure of CCNN for various
datasets in terms of R-sq., MAE, RMSE, and normalized
RMSE.

TABLE VII

ARCHITECTURE OF CCNN

Parameters CCNN Structure

Maximum neurons in hidden layer 50

 Hidden neuron kernel function Sigmoid and Gaussian

Output neuron kernel function Sigmoid

Validation method Cross validation

Number of cross-validation folds 10

Number of predictor variables 1

Number of neurons in input layer 1

Number of neurons in output layer 1

TABLE VIII

SUMMARY OF PREDICTIONS FOR DIFFERENT DATA SETS USING CCNN

Data Set R-sq. MAE RMSE Normalized RMSE

1 0.9978 1.9188 2.5728 0.0191

2 0.9979 0.8082 0.9862 0.0186

3 0.9895 1.0356 1.5825 0.0428

4 0.9972 0.9172 1.1327 0.0218

5 0.9996 5.0218 6.3647 0.0077

6 0.9977 1.1608 1.4255 0.0198

14C 0.9971 0.4664 0.7782 0.0222

17 0.9974 0.6367 0.7900 0.0214

27 0.9968 0.7656 0.9344 0.0234

40 0.9981 1.4842 1.7825 0.0178

SS1A 0.9986 1.3032 1.6736 0.0151

SS1B 0.9794 14.3782 22.8095 0.0610

SS1C 0.9993 2.3560 2.9762 0.0108

SS2 0.9983 2.5025 3.1829 0.0167

SS3 0.9956 5.5567 7.4658 0.0270

SS4 0.9988 2.1166 2.7746 0.0143

E. Training and Validation Method

The data mining techniques applied for predicting software
reliability predictions have been validated using sixteen failure
datasets taken from the DACS. The cumulative number of
failures xi detected during the testing at time ti, is taken as the
target variable where ti is the predictor. Each dataset is divided
into two parts: training and testing data. The training data is
then applied to the prediction model for predicting software
reliability.

Separate training and validation dataset are desired for
testing the accuracy of predicting models. However, when the
database used for modeling is small such as the datasets 2, 3,
4, 14C, 17 and 27 used in our study, we are not able to spare a
large portion of data for the testing, thus testing is performed
on relatively small samples. Therefore, to maximize the
utilization of each dataset we apply k-cross validation, an
alternative procedures that allows more of the data to be used
for fitting and testing. Using k-cross validation, the entire
dataset is randomly divided into k subsets (here k=10) and for
each iteration one of the k subsets is used as the training data
and the remaining subsets are used to validate the model for
predicting software reliability [8], [12], [14], [25], [26].

V. ANALYSIS RESULTS

In this section, we present summary of the results for all
sixteen data sets using CART, TreeNet, RF and CCNN in
terms of R-sq, MAE, and RMSE.

A. Observations

Some specific observations of our study for predicting
software reliability using the data mining techniques are
discussed as follows:
1. Based on the results achieved through experiments we

conducted, it is observed that designing the models for
reliability growth of varying complexity for a given data
set using CCNN is more easy. However, the effectiveness
of the CCNN model depends on behavior of the dataset,
which is basically of fluctuating nature. The CCNN
suffers from overfitting the results while dealing with
real-life previously unseen large failure datasets. Thus,
Cascade correlation neural network based models face the
problem of learning from the dynamic environment,
which requires a larger sample size for training and
testing the model together with large no. of independent
variables.

2. It can be easily shown from Tables I-VIII that the CART
and RF fit very well in terms of MAE and RMSE. Thus,
CART and RF can approximate the continuous function
accurately, which implies that such methods may be
employed effectively for estimation and prediction of
cumulative failures observed by time t in software
reliability modeling. On other hand, the TreeNet method
does not make accurate predictions in terms of R-sq.,
MAE, RMSE and therefore such methods are not found
suitable for current datasets applied in our study.
However, it would be interesting to see the impact of
other similar studies on updated large failure dataset of
real-life projects before making such generalization.

3. The robustness and validity of the CART, RF, and CCNN
models make it easier for real-world applications to model
complex failure phenomena of predicting software
reliability accurately. Moreover, the CART and CCNN
models are more adaptive to the modeling of nonlinear
functional relationships, which are difficult to model with
other classical techniques (LR) of predicting software
reliability in practice.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2046

4. The performance measurement of the CART and CCNN
generalize well even in high dimensional spaces under
small training datasets. Therefore, software reliability
prediction models can be built much earlier with these
methods than other conventional techniques with
relatively good performance achieved. However, the
TreeNet model makes relatively accurate predictions for
the training data resulting in better accuracy on the
training data but poor performance on previously unseen
failure datasets. Here, we have applied DTReg and
Salford predictive modeling tools that include an over
fitting control facility to prevent over fitting.

5. From the observed results we conclude that CART
provides more reliable performance and accurate results
than other data mining algorithms presented in our study.
We observed that the CCNN is another viable alternative
model which performs better in comparison to other data
mining techniques. Since, the supervised learning
algorithms are used to create and install hidden neurons
for maximizing the magnitude of correlation between
existing and new neurons. This way, CCNN is capable of
learning very quickly, determines the size and topology
dynamically to minimize the residual error signals leading
to the more accurate prediction result of the model.

B. Discussions

The performance measurement of the data mining
techniques (CART, TreeNet, RF, and CCNN) in terms of R-
sq, MAE, RMSE and NRMSE values corresponding to all
sixteen failure data-sets are summarized as follows. The
correlation coefficient values vary from 86% to 99% for the
majority of the datasets except dataset 3, dataset 14C, 17, and
dataset 27 using the TreeNet model. This way, the relationship
between predicted values and actual values are correlated
strongly, suggesting high degree of relationship between
predicted and actual values. Experimentally, we found that a
statistic is biased if, it consistently over or underestimates the
parameter it is estimating. A statistic is positively biased if it
tends to overestimate the parameter and a statistic is
negatively biased if it tends to underestimate the parameter.

The prediction results of CART is fairly good in terms of
normalized RMSE for all datasets lying between 0.0026
(minimum for dataset 5 having maximum failure records) and
0.0740 (maximum for dataset 17) suggesting that the model
predicts well for large size failure datasets shown in Fig. 1.
However, the performance measurement of the TreeNet and
RF in terms of NRMSE is relatively good but very
inconsistently and over fits in terms of MAE and RMSE
shown in Figs. 2 and 3.

Another positive outcome of our study is the performance
measurement of the CCNN in terms of NRMSE which lies
between 0.0191 and 0.0610 suggesting that the model predicts
well but very inconsistently in terms of MAE and RMSE. That
is, CCNN shows very encouraging results and makes it an
alternative choice, which outperformed the model, predicted
using the TreeNet and random forest methods shown in Fig. 4.

The CART model applied to predicting software reliability
was found to be quite close to the target values. This illustrates
that the model will not collapse when applied to unknown
failure datasets of a realistic environment. Finally, based on
overall performance we observe that the CART method is
more appropriate and capable of yielding more accurate
results and therefore it can be utilized as a tool for predicting
software reliability in real-life applications. Moreover, CCNN
was found to be alternative choice, which can be used in
modeling complex non-linear relationships more effectively
such as in predicting software reliability. Fig. 5 is the
graphical representation of overall performance analysis of the
data mining techniques presented in our study for predicting
software reliability.

C. Threats to Validity

The present study for software reliability prediction using
the data mining techniques has certain limitations, which need
to be addressed thoroughly before deployment in practice.
Some technical/legal/social and engineering constraints of our
study are as follows. First, the measures could not be
evaluated over updated and current failure datasets due to the
lack of empirical software failure data of modern computing
systems. Therefore, the prediction and assessment capability
of our approach across different organizations remains an
open issue for the acceptance of such models. Second, the
performance measures of various data mining algorithms
applied to software reliability prediction depends on the
representation of software failure data. Further, the failure
datasets available in literature is not updated frequently
probably due to the competitive nature of business, fear of
losing customers and other legal issues of software industry.
Therefore, more similar studies need to be carried out with
different data sets to give generalized results.

VI. CONCLUSION

In this paper, we have examined the performance of three
data mining techniques namely CART, TreeNet and Random
Forest for predicting software reliability based on past failure
data of software systems. Their effectiveness is demonstrated
through sixteen failure datasets taken from the Data and
Analysis Center for Software. The performance measurement
is compared in terms of MAE and NRMSE obtained in the test
set. From experiments conducted, we conclude that the CART
model outperformed the model predicted using the RF,
TreeNet and CCNN models in all datasets. The results
obtained through CCNN are also very encouraging, which
outperformed the model predicted using the TreeNet and RF
methods and therefore it may be utilized as an alternative
choice for making predictions.

Further, we plan to replicate our study of software
reliability prediction models by introducing some more
intelligent machine learning algorithms applied to a large
category of failure datasets of real life industrial software
projects in a realistic operating context.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2047

Fig. 1 The performance measurement of the CART for predicting
Software reliability

Fig. 2 The performance measurement of the TreeNet for predicting
Software reliability

Fig. 3 The performance measurement of the RF for predicting
Software reliability

Fig. 4 The performance measurement of the CCNN for predicting
Software reliability

Fig. 5 Comparative Analysis of various data mining in terms of
NRMSE

ACKNOWLEDGMENT

The authors wish to thank to the publisher of several
research papers and the failure datasets used of various
projects is extracted from the Software Life Cycle
Empirical/Experience Database (SLED). These datasets were
compiled by John D. Musa at Bell Telephone Laboratories and
published by the Data and Analysis Center for Software,
which can be found at http://www.dacs.org.

REFERENCES
[1] K.K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra, “Empirical analysis

for investigating the effect of object-oriented metrics on fault proneness:
a replicated case study,” Software Process Improvement Practice Vol.
14, No. 1, pp. 39–62, 2008.

[2] L. Breiman, “Random Forests, “Machine Learning,” Vol. 35, no. 1, pp.
5-32. DOI: 10.1023/A:1010933404324, 2001.

[3] K. Funatsu, “Knowledge-Oriented Applications in Data Mining,” In
Tech., under CC BY-NC-SA, 2011.

[4] J. Han, M. Kamber, “Data Mining: Concepts and Techniques,” Morgan
Kaufmann Publishers, India, 2006.

[5] T. Hastie, R. Tibshirani and J. Friedman, “The Elements of Statistical
Learning: Data Mining, Inference, and Prediction,” New York:
Springer, 2001.

[6] S. Ho, M. Xie, and T. Goh, “A study of the connectionist models for
software reliability prediction,” Computers and Mathematics with
Applications, Vol. 46, pp. 1037-1045, 2003.

[7] N. Karunanithi, D. Whitley and Y. Malaiya, ”Prediction of software
reliability using connectionist models,” IEEE Transactions on Software
Engineering, Vol. 18, no. 7, pp. 563-574, 1992.

[8] R. Kohavi, “The power of decision tables,” The Eighth European
Conference on Machine Learning (ECML-95), Heraclion, Greece 1995,
pp. 174-189.

[9] C. Kuei, H. Yeu and L. Tzai, “A study of software reliability growth
from the perspective of learning effects,” Reliability Engineering and
System Safety, Vol. 93, no. 10, pp. 1410-1421, 2008.

[10] M.R. Lyu, “Handbook of Software Reliability Engineering,” McGraw
Hill, India, pp.131-151, 1999.

[11] R. Malhotra, Y. Singh and A. Kaur, “Comparative analysis of regression
and machine learning methods for predicting fault proneness models,”
International Journal of Computer Applications in Technology, Vol. 35,
no. 2, pp. 183-193, 2009.

[12] J. Mueller, F. Lemke, “Self-Organizing Data Mining: An Intelligent
Approach to Extract Knowledge from Data,” Dresden, Berlin, 1999.

[13] D. Musa, “Software Reliability Engineering: More Reliable Software
Faster and Cheaper”, Second Edition, McGraw-Hill: India, 2009.

[14] K. Raj, V. Ravi, “Software reliability prediction by using soft computing
techniques,” The Journal of Systems and Software, pp. 576-583. DOI:
10.1016/jss.2007.05.005, 2008.

[15] Q. Ross, “C4.5: Programs for Machine Learning,” Morgan Kaufman
Publishers: San Mateo, CA., 1993

[16] Salford predictive modelling system, http//www.salford-systems.com.
(Accessed 1 July 2011).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

2048

[17] E. Scott, L. Christian, “The Cascade-Correlation Learning
Architecture,” CMU-CS-90-100, School of Computer Science Carnegie
Mellon University Pittsburgh, PA 15213, 1991.

[18] P.H. Sherrod, DTReg predictive modeling software, 2003 available at
http://www.dtreg.com, (Accessed 8 January 2011).

[19] Y. Singh, P. Kumar, “A software reliability growth model for three-tier
client-server system,” International Journal of Computer Applications,
Vol. 1, no. 13, pp. 9-16. DOI: 10.5120/289-451, 2010.

[20] Y. Singh, P. Kumar, “Determination of software release instant of three-
tier client server software system,” International Journal of Software
Engineering, Vol. 1, no. 3, pp. 51-62, 2010.

[21] Y. Singh, P. Kumar, “Application of feed-forward networks for software
reliability prediction,” ACM SIGSOFT Software Engineering Notes,
Vol. 35, no. 5, September 2010, pp. 1-6. DOI:
10.1145/1838687.1838709, 2010.

[22] Y. Singh, P. Kumar, “Prediction of Software Reliability using Feed
Forward Neural Networks,” Proceedings of Computational Intelligence
and Software Engineering (CiSE), 2010 International Conference,
Wuhan, China, DOI: 10.1109/CISE.2010.5677251, 2010.

[23] Y. Singh, A. Kaur and R. Malhotra, “Application of support vector
machine to predict fault prone classes,” ACM SIGSOFT Software
Engineering Notes, Vol. 34, No. 1, DOI=
http://doi.acm.org/10.1145/1457516.1457529, 2009.

[24] R. Sitte, “Comparison of software reliability growth predictions: Neural
Networks vs. Parametric Recalibration,” IEEE Transactions on
Reliability, Vol. 48, no. 3, pp. 285-291, 1999.

[25] Software Life Cycle Empirical/Experience Database (SLED) compiled
by Musa and published by Data & Analysis Center for Software
(DACS). http://www.dacs.org (Accessed 14 February 2009).

[26] I. Witten, E. Frank, “Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations,” Third Edition, Morgan
Kaufman, Addison-Wesley, San Francisco CA, 2011.

[27] J. Zheng, “Predicting software reliability with neural network
ensembles,” Expert Systems with Applications, Vol. 36, no. 2, pp. 216-
222. DOI: 10.1016/j.eswa.2007.12.029, 2009.

Dr Pradeep Kumar is an Associate Professor in the Department of Computer
Science & Information technology at Maulana Azad National Urdu
University, Hyderabad (Telangana State). He received his Master’s degree in
Computer Technology and Applications from Delhi Technological University,
formerly Delhi College of Engineering, Delhi University. He completed his
Ph.D. from the University School of Information & Communication
Technology (USICT), Guru Gobind Singh Indraprastha University (GGSIPU),
Delhi. His research interests include software reliability engineering, models
for software metrics, machine learning, neural network modeling and soft
computing. He has more than 25 publications in journals of international
repute including national journals, conferences and proceedings of the
international conferences. He is a Member of Association for Computing
Machines (ACM), India, Member of Computer Science Teachers Association
(CSTA), USA, Senior Member of International Association of Engineers
(IAENG), Member of International Association of Computer Science and
Information Technology (IACSIT), Singapore and Senior member of
Universal Association of Computer and Electronics Engineers (UACEE). He
is a member of editorial board for various national and international journals
in the field of software engineering and program committee member/reviewer
for several international conferences.

Prof. Abdul Wahid is Dean of School of Computer Science & IT at Maulana
Azad National Urdu University, Hyderabad (Telangana State), Pin- 500032,
India. He is a Member of Association for Computing Machines (ACM), India,
Member of Computer Science Teachers Association (CSTA), USA, Senior
Member of International Association of Engineers (IAENG), Member of
International Association of Computer Science and Information Technology
(IACSIT), Singapore and Senior member of Universal Association of
Computer and Electronics Engineers. He is a member of editorial board for
various national and international journals in the field of Web software
engineering.

