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Subband Adaptive Filter Exploiting Sparsity of
System

Young-Seok Choi

Abstract—This paper presents a normalized subband adaptive
filtering (NSAF) algorithm to cope with the sparsity condition of
an underlying system in the context of compressive sensing. By
regularizing a weighted l1-norm of the filter taps estimate onto the
cost function of the NSAF and utilizing a subgradient analysis,
the update recursion of the l1-norm constraint NSAF is derived.
Considering two distinct weighted l1-norm regularization cases, two
versions of the l1-norm constraint NSAF are presented. Simulation
results clearly indicate the superior performance of the proposed
l1-norm constraint NSAFs comparing with the classical NSAF.

Keywords—Subband adaptive filtering, sparsity constraint,
weighted l1-norm.

I. INTRODUCTION

OVER the past few decades, the relative simplicity and

good performance of the normalized least mean square

(NLMS) algorithm have made it a popular choice for adaptive

filtering applications. However, its convergence performance

is significantly deteriorated in case when correlated input

signals are involved [1], [2]. To tackle this issue, adaptive

filtering in the subband has been recently developed, referred

to as subband adaptive filtering (SAF) [3]–[6]. Its distinct

feature is based on the property that the LMS-type adaptive

filters converge faster for white input signals than colored

ones [1], [2]. Thus, carrying out a pre-whitening on colored

input signals, it results in the accelerated convergence of

an adaptive filter. In spite of the virtue of the SAF, the

use of the classical SAF has been hampered due to the

structural issues such as aliasing and band-edge effects since

the classical SAF adapts the filter weights independently at

each band [3]. By incorporating the fullband weight model,

the recently developed SAF schemes successfully address

the structural problems [4], [5]. More recently, the use

of multiple-constraints optimization problem based on the

principle of minimal disturbance leads to the normalized SAF

(NSAF), which possesses similar update recursion with those

in [4], [5], allowing the accelerated convergence rate over the

NLMS.

It is known that in case when identifying a sparse system

which is common in practical environment, adaptive filtering

exhibits poor convergence performance [7]–[9]. In this paper,

to address this problem in the context of the NSAF, the sparsity

constraint NSAF which exploit the sparsity condition in an

underlying systems to be identified is presented.
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Recently, compressive sensing, an emerging signal

processing framework, has been allowing adaptive filtering to

utilize the sparsity property [7]–[10]. Along with this line,

this study presents a framework of the sparsity constraint

NSAFs in a manner of regularizing a weighted l1-norm of

the filter taps estimate onto the cost function of the NSAF.

By choosing the distinct weighting matrices for a weighted

l1-norm regularization, two stochastic gradient based l1-norm

constrained NSAF algorithms are derived: First, the l1-norm

NSAF (l1-NSAF) is derived by utilizing the identity matrix

as a weighting matrix. Second, the reweighted l1-norm

NSAF (l1-RNSAF) which makes use of a current estimate

of the system is developed. Through various simulations,

the resulting l1-norm constraint NSAFs have proven their

superiority over the classical NSAF, especially when the

sparsity of the underlying system gets severe.

II. SPARSITY CONSTRAINED NSAF

Consider a desired signal d(n) that arise from the system

identification model

d(n) = u(n)w◦ + v(n), (1)

where w◦ is a column vector for the impulse response of an

unknown system that we wish to estimate, v(n) accounts for

measurement noise with zero mean and variance σ2
v and u(n)

denotes the 1×M input vector,

u(n) = [u(n) u(n− 1) · · ·u(n−M + 1)]. (2)

A. Conventional NSAF

Fig. 1 shows the structure of the NSAF, where the desired

signal d(n) and output signal y(n) are partitioned into N
subbands by the analysis filters H0(z), H1(z), . . . , HN−1(z).
The resulting subband signals, di(n) and yi(n) for i =
0, 1, . . . , N − 1, are critically decimated to a lower sampling

rate commensurate with their bandwidth. Here, the variable n
to index the original sequences, and k to index the decimated

sequences are used for all signals. Then, the decimated filter

output signal at each subband is defined as yi,D(k) =
ui(k)w(k), where ui(k) is 1×M row vector such that

ui(k) = [ui(kN), ui(kN − 1), . . . , ui(kN −M + 1)]

and w(k) = [w0(k), w1(k), . . . , wM−1(k)]
T denotes an

estimate for w◦ with length M . Thus the decimated subband

error signal is given by

ei,D(k) = di,D(k)− yi,D(k) = di,D(k)− ui(k)w(k), (3)
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Fig. 1 Subband structure with the analysis filter and synthesis filter and the
subband desired signals, subband filter outputs, and subband error signals

where di,D(k) = di(kN) is the decimated desired signal at

each subband.

In [6], the authors have formulated the Lagrangian based

multiple-constraint optimization problem, which is formulated

as

JNSAF(k) = ‖w(k + 1)−w(k)‖2

+
N−1∑
i=0

λi[di,D(k)− ui(k)w(k + 1)],
(4)

where λi for i = 0, 1, . . . , N − 1 denotes the Lagrange

multipliers. solving the cost function (4), the update recursion

of the NSAF algorithm is given by [6]

w(k + 1) = w(k) + μ

N−1∑
i=0

uT
i (k)

‖ui(k)‖2 ei,D(k), (5)

where μ is the step-size parameter.

B. Derivation of l1-Norm Constraint NSAF

To exploit the sparsity condition with the concept of

compressive sensing, a weighted l1-norm of the filter weight

estimate is regularized on the cost function of the NSAF, being

formulated as

Jl1−NSAF(k) = ‖w(k + 1)−w(k)‖2

+
N−1∑
i=0

λi[di,D(k)− ui(k)w(k + 1)] + γ‖Πw(k)‖1.
(6)

where ‖Πw(k)‖ accounts for the weighted l1-norm of the

filter weight vector w(k) and is written as

‖Πw(k)‖1 =
M−1∑
m=0

πm|wm(k)|, (7)

where Π is a M × M weighting matrix whose diagonal

elements are πm and other elements equal to zero, and wm(k)

denotes the mth tap weight of w(k), m = 0, 1, . . . ,M − 1.

In addition, γ is a positive valued parameter which plays a

role in compromising the error related term and the weighted

l1-norm regularization in right-hand side of (6).

To find the optimal weight vector w(k+1) which minimizes

the cost function (6), the derivative of (6) with respect to w(k+
1) is taken and set to zero. Note that the weighted l1-norm

regularization term, i.e., ‖Πw(k)‖1 is not differentiable at any

point in case when wm(k) equals zero.

To deal with this issue, a subgradient analysis [11]

is incorporated, providing a proper subgradient of

non-differentiable function, here, ‖Πw(k)‖1. Thus, taking the

derivative of (6) with respect to the weight vector w(k + 1)
and letting the derivative to zero, it leads to

w(k+1) = w(k)+
1

2

N−1∑
i=0

λiu
T
i (k)−

γ

2
∇s

w‖Πw(k)‖1, (8)

where ∇s
wf(·) denotes a subgradient vector of a function f(·)

with respect to bfw(k + 1). A possible subgradient vector

∇s
w‖Πw(k)‖1 can be obtained as [11]

∇s
w‖Πw(k)‖1 = ΠT sgn(Πw(k)) = Πsgn(w(k)), (9)

since Π is assumed as a diagonal matrix with positive-valued

elements. Substituting (9) into (8), it is given by

w(k + 1) = w(k) +
1

2

N−1∑
i=0

λiu
T
i (k)−

γ

2
Πsgn(w(k)), (10)

Substituting (10) into the multiple constraints of the NSAF,

i.e., di,D(k) = ui(k)w(k + 1), i = 0, 1, . . . , N − 1 and

rewriting as a matrix form, it leads to

Λ = 2[U(k)UT (k)]−1eD(k)

+ γ[U(k)UT (k)]−1U(k)Πsgn(w(k)),
(11)

where Λ = [λ0, λ1, . . . , λN−1]
T is the N×1 Lagrange vector,

U(k) =

⎡
⎢⎣

u0(k)
...

uN−1(k)

⎤
⎥⎦ , eD(k) =

⎡
⎢⎣

e0,D(k)
...

eN−1,D(k)

⎤
⎥⎦ .

By neglecting the off-diagonal elements of U(k)UT (k) [6],

(11) can be simplified to

λi = 2
ei,D(k)

||ui(k)||2 + γ
ui(k)

||ui(k)||2Πsgn(w(k)), (12)

for i = 0, 1, . . . , N − 1.

Consequently, combining (10) and (12), the update

recursion of the weighted l1-norm constraint NSAF is given

by

w(k + 1) = w(k) + μ

N−1∑
i=0

[ uT
i (k)

||ui(k)||2 ei,D(k)

+
1

2
γ

ui(k)

||ui(k)||2Πsgn(w(k))uT
i (k)

]
− μγ

2
Πsgn(w(k)),

(13)

where μ is the step-size parameter.
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TABLE I
COMPUTATIONAL COMPLEXITY

NSAF l1-NSAF l1-RNSAF

Multiplications 3M + 3NL 6M + 3NL 7M + 3NL
Divisions 1 2 2 +M/N

C. Choosing the Weighting Matrix for l1-Norm Constraint
NSAF

Here, by choosing the weighting matrix Π, two versions

of the l1-norm constraint NSAF are developed: First, the use

of the identity matrix as the weighting matrix, i.e., Π = IM ,

results in the following update recursion

w(k + 1) = w(k) + μ

N−1∑
i=0

[ uT
i (k)

||ui(k)||2 ei,D(k)

+
1

2
γ

ui(k)

||ui(k)||2 sgn(w(k))uT
i (k)

]
− μγ

2
sgn(w(k)),

(14)

which is referred to as the l1-norm NSAF (l1-NSAF).

Second, to approximate the actual sparsity condition of an

underlying system, i.e., l0-norm of the system, the weights of

Π need to be chosen inversely proportional to magnitude of

the actual tap values of the system. However, since the actual

tap values of the system is unknown, the current filter taps

estimate is utilized instead of the actual tap values which is

referred to as the reweighting scheme [12], as follows:

πm(k) =
1

|wm(k)|+ ε
for m = 0, 1, . . . ,M − 1, (15)

where wm(k) denotes the mth tap weight of the w(k) and

ε is a small positive value to avoid singularity in the case

when |wm(k)| = 0. Then, the weighting matrix Π consists

of the values of πm(k) as the mth diagonal elements and has

a time-varying feature. Finally, the update recursion of the

reweighted l1-norm NSAF (l1-RNSAF) is given by

w(k + 1) = w(k) + μ
N−1∑
i=0

[ uT
i (k)

||ui(k)||2 ei,D(k)

+
1

2
γ

ui(k)

||ui(k)||2 sgn(w(k))uT
i (k)

]
− μγ

2

sgn(w(k))

|w(k)|+ ε
,

(16)

where ui(k) = ui(k)Π and the vector division operation in

last term accounts for a component-wise division.

Table I lists the number of multiplications and divisions

of the NSAF [6], l1-NSAF, and l1-RNSAF per iteration. As

shown in Table I, the use of l1-norm constraint leads to an

increase in computation.

III. SIMULATION RESULTS

The performance of the proposed l1-norm constraint NSAFs

is validated by carrying out computer simulations in a system

identification scenario in which the unknown channel is

randomly generated. The length of the unknown system is

M = 128 in experiments and P of them have non-zero

values. Then, the degree of sparsity is denoted as S = P/M .

The non-zero valued taps are positioned randomly and their

values are taken from a Gaussian distribution N (0, 1/P ). The
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Fig. 2 Normalized MSD curves of the NSAF, l1-NSAF, and l1-RNSAF
(N = 4 and 8)
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Fig. 3 Normalized MSD curves of the NSAF and l1-RNSAF for various γ
values (N = 4)

adaptive filter and the unknown system are assumed to have

the same number of taps. The input signals are obtained by

filtering a white, zero-mean, Gaussian random sequence x(i)
through a first-order system G(z) = 1/(1 − 0.9z−1). The

signal-to-noise ratio (SNR) is calculated by

SNR = 10 log10

(
E[y2(i)]

E[v2(i)]

)
,
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Fig. 5 Normalized MSD curves of the NSAF, l1-NSAF, and l1-RNSAF
under various sparsity conditions (S = 4/128, 8/128, 16/128, and

32/128)

where y(i) = uiw
◦. The measurement noise v(i) is added to

y(i) such that SNR = 10, 20, and 30dB. In order to compare

the convergence performance, the normalized mean square

deviation (MSD),

Normalized MSD =
E‖w◦ −wi‖2

‖w◦‖2 ,

is taken and averaged over 50 independent trials. The

cosine-modulated filter banks [13] with the subband numbers

of N = 4 and 8 are used in the simulations. The prototype

filter of length L = 32 is used. The step-size is set to μ = 0.5
for the NSAF, l1-NSAF, and l1-RNSAF. In addition, ε = 0.1
is chosen for the l1-RNSAF.

Fig. 2 shows the normalized MSD curves of the NSAF,

l1-NSAF, and l1-RNSAF in cases of N = 4 and 8. For

the l1-NSAF and l1-RNSAF, γ = 1 × 10−4 for N = 8
and γ = 3 × 10−5 for N = 4 are chosen, respectively. As

shown in Fig. 2, the l1-RNSAF not only outperforms the

conventional NSAF and l1-NSAF, but also the l1-NSAF has

better performance than the NSAF in term of the convergence

rate and the steady-state misadjustment.

In Fig. 3, the normalized MSD curves of the NSAF and

l1-RNSAF for different γ values are illustrated. For different

γ values (γ = 1× 10−4, 1× 10−5, 5× 10−5, and 1× 10−6),

the l1-RNSAF are superior to the NSAF, indicating that the

l1-RNSAF is not excessively sensitive to γ. The analysis for

an optimal γ value remains as a future work.

Next, the performance of the proposed l1-norm constraint

NSAFs are compared to the NSAF under different SNR

conditions. Fig. 4 depicts the normalized MSD curves of the

NSAF, l1-NSAF, and l1-RNSAF under SNR = 10, 20, and

30dB, respectively. The values of γ are set to 5× 10−4, 5×
10−5, and 3×10−5 for SNR = 10, 20, and 30dB, respectively.

It is clear that both the l1-NSAF and l1-RNSAF are superior

to the NSAF under different SNR cases. Furthermore, the

l1-RNSAF performs well compared to l1-NSAF in cases when

both low and high SNR conditions.

In Fig. 5, the convergence properties of the NSAF and

l1-RNSAF is compared under various sparsity conditions

of an underlying system. With the same length of the

system, i.e., M = 128, different sparsity conditions (S =

4/128, 8/128, 16/128, and 32/128) are considered. The

values of γ are set to 3 × 10−5 for the l1-RNSAF in all

sparsity cases. Fig. 5 shows that the NSAF is independent

from the sparsity condition. On the other hand, the results

indicate that the more sparse the underlying system, the better

the l1-RNSAF.

IV. CONCLUSION

A framework of the NSAF with sparsity constraint has

been presented in the context of compressive sensing.

By incorporating a weighted l1-norm regularization in the

cost function, the proposed l1-norm constraint NSAF has

exploited the sparsity condition of an underlying system. By

choosing the distinct weighting matrices which are thought

to be different l1-norm regularization, two l1-norm constraint

NSAFs, i.e., l1-NSAF and l1-RNSAF, have been developed.

The simulation results indicated that the proposed l1-NSAF

and l1-RNSAF improved convergence performance.
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