
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2561


Abstract—Automatic program generation saves time, human

resources, and allows receiving syntactically clear and logically
correct modules. The 4-th generation programming languages are
related to drawing the data and the processes of the subject area, as
well as, to obtain a frame of the respective information system. The
application can be separated in interface and business logic. That
means, for an interactive generation of the needed system to be used
an already existing toolkit or to be created a new one.

Keywords—Computer science, graphical user interface, user
dialog interface, dialog frames, data modeling, subject area modeling.

I. INTRODUCTION

UTOMATED software generation is a popular problem
in the sphere of software industry, associated with

automating work in order to save time, brain work and
resources [3]. Generating programs allows creating
syntactically clean and logically correct modules, starting with
designing and modeling the subject area up to obtain the final
product. Another target of the automatic generation is to drop
out of the need gathering an expert team to update the existing
software. This implies a development of a wide class of
systems for automated software creation or separated modules
for: modeling of a subject area; describing the requirements
for the design software; creating documentation for specific
purposes. Software generation can be reviewed in various
aspects. There are different specifications, one of which is
based on the functional status:
1) interface in order to connect with the user – related to the

automatic interface generation;
2) functional part – related to the automatic generation of

business logic, i.e. – application logic.
The fourth generation programming language implies the

usage of graphic or natural-language interface with helps to
describe the task. Usually it is being done by a specialist in the
subject area rather than a software specialist. This is the basis
on which the respective application software is being
generated.

II. DETAILED DESCRIPTION

There have been created multiple toolkits [3], which tend to
develop the automated software creation in different stages.
Some of them assist only in the process of designing; others
come to finalize the process by generating the appropriate and
its supplying documentation. In the group of partial

V. Velikov is with the University of Ruse, Bulgaria, dept. of Informatics

and Information Technologies (phone: ++359 886 011 544; e-mail:
vvelikov@ami.uni-ruse.bg; home page: www.valveliko.com).

automation software it is possible to found free or open source
software, while in the group of comprehensive automation
software (CASE-systems) the representatives are only a few,
and the price is extremely high. That offers many companies a
niche market in providing their own tools and frames with
different features and at with different prices. They help the
automate creation and production of the whole software or of
its individual stages separately.

One possible idea for a system, that helps the software
creation, is shown in Fig. 1:
1) The first stage is а description / modeling of the subject

area. This can be accomplished in various methods [2],
but it is preferred to be done by graphic editors such as
BPMN, UML, etc. [1]. They should be very intuitive and
easy to use because their users are very often good
specialists in a respective subject area rather than software
ones. The result of this subsystem is a well described
subject area. It is possible to be defined static object as
well as some actions between them.

The described subject area can be stored into a common for
the whole system pre-defined internal machine representation,
or to be transferred for further processing by some of the
conventional free text formats, e.g.: XML-file.
2) The graphically described subject area is presented to a

Java-code generator. On the basis of the graphic
description are generated Java-classes with corresponding
to them fields, as well as methods that need to be
processed.

The final result is a defined structure of a database, along
with functions that need to be processed. Many of the basic
functions are known in advance:
1) methods for accessing the classes’ fields (get- and set-

methods);
2) subprograms that can realize basic manipulations in a

database (add, copy, delete, search by key, sorting, etc.).
The tasks are being easily determined and generated this

way.
One more functionality can be added to be already defined

ones - generation of documentation for the product and for the
subprograms. That prepared module is the first step of a
CASE-system for automated software creation. The ultimate
goal is such a class system is usually generation of elements
for three-layer client-server applications: generation of
database; generation of the client part (which usually works as
a Java-applet in a browser); generation, related to the business
rules in the middle layer. This system can be used as a
separate application that corresponds with the following
subsystems or the external ones trough an appropriate internal

From Modeling of Data Structures towards
Automatic Programs Generating

Valentin P. Velikov

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2562

machine representation of the subject area or through XML-
files.

UML/BPMN – graphical
editor of Java-class

diagrams

Java-code generator

defined CLASSes
(Java program, described

classes, fields and methods)

defined
DB structure +

processing functions

DB – common
internal machine
representation of
data structures

described
data structure

*.doc

metadata
editor

Fig. 1 Unit for Data structure + software generation

CASE systems, code generators [3] and development

methods have been analyzed for the design of this module, and
a market niche for realizing an application and documentation
generator has been sought after. This defines the purpose of
the study - to be established a methodology which will
develop an application generator in different subject areas, as
well as a prototype of this generator.

One of the problems in designing consists in choosing the
methodology by which the project would be realized (incl. the
internal machine representation of the selected structures), as
well as choosing the appropriate technical primitives – for
example - programming language. In order to develop the
general project as a program language for the creation of the
subsystem is selected Java.

A. A Graphical Editor

The first module in this subsystem is the created Graphical

editor for creation, editing, and visualization of diagrams of
Java classes, which should be developed to a full-featured
UML/BPMN graphical editor. During its creation, the
following things are required:
1) In concern with the interface and the environment (Fig.

2):
 The process of creating and editing the different elements,

that constitute the class diagram, should be accomplished
in a graphical environment;

 The environment visually illustrates the set of data,
elements and prepared diagrams; it should allow an
intuitive and efficient work with them;

 The interface has to provide the necessary tools for
working with the program; they have to be accessible and
intuitive to use;

 The presentation of the diagrams should follow the
standards of UML 2.0. Classes should able to be
displayed together with their attributes and methods, as
well as the links between them;

2) Requirements in concern with the system functionality:
 To be realized: drawing, processing (by entering or

deleting of data) and moving the different elements of the
classes’ diagrams;

 Saving the project should be possible, as well as loading a
project from a stored file;

 Selecting the options for working with the program
should be done through the selection menu, using a
mouse;

 Entering and erasing text data (names of attributes,
methods, etc.) to be done using the keyboard;

3) Requirements in concern with the errors management:
 Errors to be processed during saving and loading a

project;
 To be processed the errors by incorrect data input, invalid

element position, etc.
When creating this subsystem it should be well understood

that it is not designed for a wide range of users, but a small
circle of experts who are familiar with the subject area.

The architecture and the implementation of this module are
being detailed described in [6].

B. Java-Code Generator

The task that this subsystem fulfills is to generate a
programming Java code from the available graphic image (a
model of the corresponding subject area, created by the UML-
editor), that corresponds to the description.

To generate program code in Java through an appropriate
graphical user interface (such as in Fig. 3) in each class there
must be filled in the necessary information, which can be done
by a junior programmer or designer.

Since the created data structures can be displayed in a
variety of inheritable relations and relations between them,
therefore the dialog window in Fig. 3 in which they are being
displayed has a different or changing content during runtime.

Since the number of classes (Fig. 3) is unknown in advance
(unlimited, too), the most appropriate thing for their storage is
to be used some kind of a dynamic linear structure (in this

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2563

ca

da
m

ase - arrayList)

If it is know
atabase (e.g.

metadata is ava

).

wn in advanc
MySQL) an

ailable, then th

ce the kind a
nd if an info
he type of the

Fig.

Fig.

and the type
ormation abou
 fields and ma

2 The Graphica

3 Java-code ge

of the
ut the
any of

the
mod
the

al editor

enerator

modifiers cou
deling with th
names of the

uld be taken a
he UML- edit
fields and the

automatically
tor, the neede
classes could

from there. W
ed information
d be taken from

When
n for
m the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2564

metadata. If the type of database is already known (i.e. – the
language for accessing and manipulating the data is known)
there could automatically be generated a code for creating the
basic manipulating functionalities that have influence over the
database: create, delete, update. It is appropriate in such a
case, while being in graphic mode (UML- editor) to be
indicated the manipulated fields and/or the basic actions. It
may also be appropriate for the UML-editor to be functionally
supplemented by some properties for QBE (Query By
Example).

If the process is not supervised by a human specialist, the
subsystem will be generating empty methods with modifiers
by default. Those values can be changed in the settings of the
environment.

The architecture and the implementation of this module are
described in detail in [4].

C. Generator of Documentation

It is possible to be performed in various ways and to cover
in different levels the created application.

A lot of software companies recommend writing a self-
documented code, i.e. - using generally available
recommendations (conventions) in the dispensation of
subprogram names, variables, structures and so on. Since
many national or private company standards include some
additional requirements towards the documentation of the
created software, it is often needed an additional description of
the code that is being generated. Using some tools would
support the process.

The Java language itself offers some additional
opportunities for documenting the code, which are cleverly
used in the most common environment (Eclipse) for this
programming language, as well as the Javadoc tool. This
opens up a field for an additional or a new development, when
using the existing tools.

D. DB – A Common Internal Machine Representation of
Data Structures

With the graphical editor is described a subject area:
classes, relationships, actions. The result should be stored on
permanent media. And there are various possible options. In
order for maximal speed - some of optimal is to use frames [7]
with pre-defined internal machine representation of the subject
area. The disadvantage of this approach: it is possible to
process these frames by that system only, or from someone
who has a frame structure.

E. Metadata Editor

When defining a group of frames to describe a subject area,
they can be stored in a particular database. If describing
another subject area there can be defined another group of
frames and so on.

Working with a database of frames requires an editor that
allows all the basic operations with the database to be
executed: examination of the frames in the subject area,
addition of new ones, editing of existing ones, deleting, and
some other specific manipulations.

F. Converter from Java-Code to XML-File and vice versa

One of the ideas is for an existing program (Java-class,
method, library, interface) - to be modified by an external
application (on an external developer, for intermediate
processing), aiming to add a new functionality that currently
does not exist into the newly created system. That means Java-
code (or UML, or another diagram) to be transferred to an
external module, to be processed and returned. This purpose
requires a common format for presentation of the code, data,
charts, etc. The best in the case is using а text format or its
variation, e.g. XML-format. This raises the need for creation
of a converter that transforms Java-code to XML-file. The so
existing Java application can be exported via XML to another
system, which would modify the code (further processing,
update of existing programs or generating new sub-programs),
and the merged code (in XML-format) would be imported
back again.

It is possible in a particular moment for a system to be part
of another system (with different developers), and to be used
in preconditioning of a code. In this case, the code should be
transferred (import/export) to another system. For this
purpose, there are needed some converters from Java-code
(Java class) to XML-format and vice versa.

The main goal is to create a Java application, which can
convert a Java-class (program) into XML text file. Well
formatted, the output file can be easily read by people outside
the programming field. Presented in such a way, the task is to
be created an application which can convert not only Java-
classes, but also the basic Java language constructs such as: a
class, a package, import, constructors, methods, method calls,
variable values, variable worthless, conditional statements
such as- if, if-else, for, while, single- and multi-line
comments. With the development of this subsystem, other
language constructs will be added.

The architecture and the implementation of this module are
described in detail in [5].

III. CONCLUSION

As an application to a developed methodology, it was
created a subsystem for an automatic software generation (Fig.
1). In the beginning, a specialist in the respective subject area
(not an IT-specialist) describes the task, using a graphical
(UML) editor. On the next stage, an IT-specialist completes
the description, assisting the software generation and the
supporting documentation. To complete functionality, if
necessary, it can be used external modules – the
communication with them is performed in an XML-format.
The frames that describe a subject area can be stored in a
common database for internal machine representation of the
used structures.

ACKNOWLEDGMENT

This work is supported by the National Scientific Research
Fund under the contract ДФНИ - И02/13.

In the course of this study has been used equipment
purchased under the project BG161PO003-1.2.04.-0011-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2565

S0001 "Development of applied research at the University of
Ruse" implemented with the financial support of OP
"Development of the Competitiveness of the Bulgarian
economy 2007-2013 ", co-financed by the European Union
through the European Regional Development Fund and the
state budget of the Republic of Bulgaria."

REFERENCES
[1] Hristova, P – Studying UML in The “Master degree” in Informatics

education level, Proceedings, vol.47, book 5.1, Mathematics,
Informatics and Physics, Ruse, 2008

[2] Stanev I. Generation of Computer Programs for Robot Control Specified
through Limited Natural Language Texts. In Elektrotechnica &
Electronica. Vol. 5/6 1999г. Pp. 18 – 23.

[3] Velikov V., I. Kamenarov, Software development aid systems, ITHET
2014,UK,
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7155668&filt
er%3DAND%28p_IS_Number%3A7155664%29

[4] Velikov V., K. Dobreva. Generator from Java class-diagrams into Java
source code, III International Scientific-Practical Conference
“Information Systems and Technology: Management and Security”,
December 2014, Тольятти, ISBN 978-5-9581-0340-9

[5] Velikov V., M. Makarieva. Parser Java-code to XML-file.// Proceedings
of the Union of Scientists - Ruse, Book 5 - Mathematics, Informatics
and Physics, 2014, No Vol. 11, pp. 72 - 79, ISSN 1314-3077.

[6] Velikov V., K. Grigorova, A. Iliev. Graphical editor for creation and
editing Java-class diagrams. In Proceeding of University of Ruse, 2014,
vol. 53, book 6.1, p.121-126. (In Bulgarian - Великов, В., К.
Григорова, А. Илиев. Графичен редактор за създаване и
редактиране на Java клас-диаграми. В: Научни трудове на РУ & СУ,
Русе, т.6. 2014)

[7] Minsky M., A Framework for Representing Knowledge. 1975, NY,
McGraw Hill, pp.211-277. (in Russian: Минский. М. Фреймы для
представлении знании. “Энергия”, Москва, 1979.
http://www.raai.org/library/library.shtml?extbooks 2014 г.)

Valentin P. Velikov, PhD was born in Straklevo, Ruse, Bulgaria on 21 march
1962. In 1980 was graduated from the multidisciplinary high school “Hristo
Botev” in Ruse, Bulgaria. In 1987 he took his diploma as an engineer in the
fields of computer engineering (software profile) from The University of
Ruse. In 2014 he took a Philosophy Degree in Informatics (Computer science)
from the same university.

1980-1982 - Compulsory military service in Bulgaria. In 1987 he obtained
a position as an assistant professor of Informatics (computer science). In 1999
he was promoted to the position of a senior assistant (senior lecturer) in Dept.
of Informatics. He is lecturer in C/C++, Java SE/EE/ME, Android etc.

Dr. Velikov is a member of the Union of Scientist in Bulgaria and in the
Union of Mathematicians in Bulgaria (branch Ruse).

