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Spatial Econometric Approaches for Count Data:
An Overview and New Directions
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Abstract—This paper reviews a number of theoretical aspects
for implementing an explicit spatial perspective in econometrics
for modelling non-continuous data, in general, and count data, in
particular. It provides an overview of the several spatial econometric
approaches that are available to model data that are collected with
reference to location in space, from the classical spatial econometrics
approaches to the recent developments on spatial econometrics to
model count data, in a Bayesian hierarchical setting. Considerable
attention is paid to the inferential framework, necessary for
structural consistent spatial econometric count models, incorporating
spatial lag autocorrelation, to the corresponding estimation and
testing procedures for different assumptions, to the constrains and
implications embedded in the various specifications in the literature.

This review combines insights from the classical spatial
econometrics literature as well as from hierarchical modeling and
analysis of spatial data, in order to look for new possible directions
on the processing of count data, in a spatial hierarchical Bayesian
econometric context.

Keywords—Spatial data analysis, spatial econometrics, Bayesian
hierarchical models, count data.

I. INTRODUCTION

NOWADAYS, the consideration of spatial effects in
econometrics modelling evolved to form one of the

branches of econometrics [1]. The definition and scope of
spatial econometrics has expanded substantially over the last
three decades, moving from the “margins of urban and regional
modeling” to the mainstream of econometrics methodology
[1]. When sample data includes a location component,
two scenarios have to be addressed, spatial autocorrelation
between observations, and spatial heterogeneity in relations.
Under these, fundamental assumptions of traditional statistical
methods, that data values are derived from independent
observations or that a single relationship with constant
variance exists across the sample data, are no longer
guaranteed [2]. Traditional econometrics has largely ignore
this violation of the Gauss-Markov assumptions used in
regression modeling [3]. An adequate alternative is to
implement spatial econometrics models that allow to assess the
magnitude of the space influences, by introducing a specific
weighting scheme, in which relationships among spatial areas
are specified [4]. The topology or spatial pattern of the data is
carried out by the choice of a spatial weights or contiguity
matrix, commonly denoted by the letter W, and represents

P. Simões is with CMA and Área Departamental de Matemática, ISEL -
Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa,
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our comprehension of the spatial association among spatial
units [5]. A complete treatment of many aspects of spatial
econometrics, including the application of Bayesian estimation
methods, is aimed.

In this paper, two main methodologies in spatial
econometrics are presented, more addressed for area
aggregated spatial data, typically count data. First the
employment of the traditional econometric models. These
models were designed for continuous data, demanding count
data transformation to meet the model’s assumptions. Second,
an alternative for count data, the use of hierarchical Bayesian
models, where data can be modeled as having any distribution
(Poisson is the usual choice here). Inference for this Bayesian
paradigm needs to be based on simulation methods, namely
the Markov Chain Monte Carlo (MCMC) method [6].
However, recently, another spatial econometric approach, that
incorporates spatial lag autocorrelation in modelling counts is
also available, the spatial autoregressive lag model of counts,
recently developed by Lambert, Brown and Florax in 2010 [7].
It showed that some other possible directions for count data
are being investigated and, at the same time, that an alternative
way of doing Bayesian inference for spatial econometrics
models is explored [8].

II. SPATIAL PERSPECTIVE IN ECONOMETRICS

Spatial econometrics is an appropriate area when
dealing with data reflecting geographical events, which
can accommodate the magnitude of the spatial influences,
while maintaining other factors or variables considered
important to explain of the phenomenons of interest. In the
next sections several theoretical aspects for implementing
an explicit spatial perspective model in econometrics are
displayed.

A. Econometrics

Econometrics is based upon the development and
application of statistical methods for studying and
understanding economic phenomenons. It combines statistics
with economic theory to analyze and test economic
relationships. It is used in various fields of applied economics
for estimating economic relationships, testing economic
theories, evaluating and implementing government and
business policy as well as predicting future behaviors. Its main
application is the forecasting of important macroeconomic
variables, such as interest rates, inflation rates and gross
domestic product. However, currently, the use of econometric
methods goes beyond the study of economics, and is also
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used in areas such as meteorology, biology, political science
and education [9].

The kind of analysis that can be performed in econometrics
is conditioned by the nature of the data. The data sets can
be classified, essentially, into three types, cross-sectional data,
time series and panel data.

Cross-Sectional Data A cross-sectional data set contains
multiple observations of multiple phenomenons taken at
a given point in time. Sometimes the data on all units
do not correspond to precisely the same time period.
In cross-sectional data analysis is given importance to
their values but not to their ordination. The data sets
are classified as pooled cross-sectional data, when we
observe one or more phenomenons in two or more
different moments in time, and then join the observations.
Time Series Data A time series data set consists of
observations on a variable or several variables over time.
Unlike cross-sectional data, the chronological ordering of
observations in a time series gives important information,
once past events can influence future events, time is an
important dimension.
Panel Data A panel data, also known as longitudinal
data set, consists of a time series for each cross-sectional
member in the data set. For example, we can collect
information such as investment or financial data, about
the same set of firms over a six-year time period. This
information can also be collected on geographical units.
The panel data differs from pooled cross-sectional data by
the fact that the same cross-sectional units, individuals,
firms, countries, are followed over a given time period.

The study and understanding of economics phenomenons
in econometrics is carried out resorting to different models
and statistical techniques. Simple and multiple regression
is a main tool in econometrics [10]. For example, consider
the following scenarios: an economist may be interested in
study the dependence of personal consumption expenditure
on after-tax or disposal real personal income. This kind
of analysis may be important in estimating the marginal
propensity to consume, that is, average change in consumption
expenditure for a monetary unit of change in real income, [10].
For dealing with statistical relationships among variables in
econometrics, essentially with random or stochastic variables,
which have probability distributions, the correlation analysis
is used [10]. The principal aim is to measure the strength
or degree of association between two variables. For example,
an economist can be interested in studying the correlation
of personal consumption with after taxes the real personal
income.

The term autocorrelation may be defined as “correlation
between members of series of observations ordered in time,
as in time series data, or in space, as in cross-sectional data ”
[10]. For example, in a time series regression of consumption
expenditures the current period depends, among other things,
on the consumption expenditure of the previous period. In
this situation autoregressive models are used. There are
also models that incorporate qualitative explanatory variables,
called dummy variables. These variables that cannot be

readily quantified, such as gender, religion, and yet influence
the behavior of the dependent variable. It is also possible that
the dependent variable in a regression model be qualitative
itself. In situations the variable is a ”yes ” or ”no” type,
like ownership of a house, possession of an attribute. Some
approaches to estimate such models are the linear model, the
logit model or the probit model.

Until now, we just refer to models with a single equation, for
which there was a single dependent variable y and one or more
explanatory variables X’s, with a cause-effect relationship.
However, in many situations, this kind of relationship is not
meaningful. This happens if y is determined by the X’s,
and some of the X’s are, on the other hand, determined by
y. In this case, the methodology of simultaneous equation
models is employed. For time series data, which are frequently
and intensively used on empirical research in econometrics,
assuming that a time series is stationary, the ARIMA
modeling can be used for forecasting, however another
forecasting method, known as vector autoregression (VAR)
is also an alternative method for this purpose. (For more details
of the enounced methods see, for example, [10]).

The traditional econometric methodologies assume a
particular econometric model and try to see if it fits a given set
of data. However, there are another econometrics approaches,
for example, the ones that use Bayesian statistics, which can
improve some econometric techniques [11] [12].

B. Spatial Data

The ready availability of increasing volumes of
geo-referenced data and a user friendly technology to
manipulate these in geographic information systems, with the
growing attention to a spatial perspective, is stimulating an
increasing interest in spatial analysis [5] [1]. Data for which
location attributes are an important source of information,
when taken into account, yield a spatial modelling approach.
The recognition of the spatial dimension can give more
meaningful results than an analysis that ignores it [13].
Observations for which the spatial arrangement, i.e., absolute
location and/or relative position, is explicitly taken into
account, are termed spatial data. Such data are the subject of
study in many research fields, such as climatology, ecology,
epidemiology, econometrics, sociology, among others.

Spatial data analysis focuses on detecting patterns, exploring
and modelling relationships between such patterns in order to
understand processes responsible for the observed patterns.
The spatial data analysis can be applied, for example, to
emphasises the role of space as a potentially important
explanator of socioeconomic systems, taking spatial patterns,
into account. Three main classes of spatial data can be
distinguished: Geostatistical or spatially continuous data,
that is, observations associated with a continuous variation
measure over space, given observed values at fixed sampling
points, areal or lattice data, related to of the discrete
measured attribute over space, and spatial point patterns,
where the objects are point locations at which events of interest
have occurred [13].
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C. Spatial Econometrics

The definition and scope of spatial econometrics evolved
in the literature over the last thirty years [1]. The definition
provided in Anselin (1988) [4], states that the domain
of spatial econometrics is delineated as “the collection of
spatial techniques that deal with the peculiarities caused by
space in the statistical analysis of regional science models”.
Contrasting spatial econometrics to standard econometrics,
a straight definition is given as handling with “the specific
spatial aspects of data and models in regional science
that precludes a straightforward application of standard
econometric methods” [4]. This spatial aspects are classified
into two main spatial effects, spatial dependence and spatial
heterogeneity [1] [13]. Some twenty years later, this definition,
whose subject and range are constrained to urban and regional
modelling, changed. The enormous growth in the importance
and application of spatial techniques in economics as well
as in other mainstream sciences, led to the extension of
the context, no longer restricted to urban and regional
modelling. According to Anselin, to 2006, the subject of
spatial econometrics is defined as a “subset of econometric
methods that is concerned with spatial aspects present in
cross-sectional and space time observations” [1].

When sample data have a location component, two
scenarios have to be considered: spatial autocorrelation
between observations and spatial heterogeneity in relations.
Under these scenarios, fundamental assumptions in traditional
statistic methods, namely, that data values are derived from
independent observations or that exists a single relationship
with constant variance across the sample data, are no
longer guaranteed [2]. Spatial econometrics is an adequate
alternative that can be used when dealing with observations
that describe geographic phenomenons or events [5]. Variables
related to location, distance and arrangement (topology) are
treated explicitly in model specification, estimation, diagnostic
checking and prediction [2]. Similarly to what happens in any
statistical modelling, four important tasks can be identified
that define the modern spatial econometric methodology:
model specification (which deals with the formal mathematical
expression for spatial dependence and spatial heterogeneity in
econometric models), estimation methods, a specific testing
and spatial prediction [1].

Geostatistical data, also termed field data, play an important
role in environmental sciences (see, for example, [13] and references
there in), but less important in spatial econometrics [5]. The
most appropriate perspectives for spatial analysis applications
in spatial econometrics are areal data and spatial point process.
In this work we will focus on areal data.

D. Spatial Dependence

Spatial association, also referred to as spatial
autocorrelation, corresponds to situations where observations
or spatial units are non-independent over space, that is,
nearby spatial units are associated in some way [13]. Such
association can be identified in a number of ways, using a
scatter-plot where each value is plotted against the mean
of neighbouring areas - the Moran’s scatter plot, or

using a spatial autocorrelation statistic such as Moran’s
I or Geary’s C. Moran’s I is a measure of global spatial
autocorrelation, while Geary’s C is more sensitive to local
spatial autocorrelation [14]. Both of these statistics require
the choice of a spatial weights or contiguity matrix, usually
denoted by the letter W , that represents the topology or spatial
arrangement of the data and represents our understanding
of spatial association among all areas units [5]. Usually,
wii = 0, i = 1, ..., n, where n is the number of spatial units,
but for i �= j, the association measure between area i and
area j, wij , can be defined in many different ways, being the
most usual the minimum distance between areas [14].

When spatial autocorrelation is identified, due to its distinct
nature, a specialized set of methods is needed. In order to
capture dependencies across spatial units, spatially correlated
variables are introduced in the model specification. These
variables are weighted averages of the neighbours, where the
definition of neighbours is carried out through the specification
of the spatial weights matrix W. These variables, depending
on the problem, can constitute the dependent response as well
as the explanatory variables or the error terms [1], [12], [2].

E. Spatial Heterogeneity
The term spatial heterogeneity refers to variation in relations

over space, due to structural instability or nonstationarity of
relationships [2]. Heterogeneity can be related to the spatial
structure or to the spatial process generating data. In contrast
to spatial dependence, this issue does not always require a
separate set of methods. The spatial aspect of heterogeneity
is the additional information that may be provided by
the spatial structure, for example, this may inform models
for heteroscedasticity, spatially varying coefficients, random
coefficients and spatial structural change [1]. The specification
of spatial heterogeneity in models, for structural instability,
can be classified into discrete heterogeneity and continuous
heterogeneity. The former consists of a pre-specified set
of spatially distinct units, or spatial regimes [3], between
which model coefficients and other parameters are allowed
to vary. In discrete heterogeneity, specifically, a dummy
variable is created for each regime, (i.e. taking a value
of one for observation in the regime and zero for all
others), and interact with each explanatory variable with
each dummy [15]. Continuous heterogeneity specifies how the
regression coefficients change over space, either following a
predetermined functional form, requiring a spatial expansion
method, or determined by the data through a local estimation
process, as in geographically weighted regression(GWR) [1]
[15].

Spatial heterogeneity can be identified by some
tests, for structural instability with the Chow Test, for
heteroscedasticity, with Breusch-Pagan test. Both tests are
used ignoring the presence of spatial dependence, otherwise,
the spatial Breusch-Pagan Test and the Spatial Chow Test
should be used instead [15].

F. The W Matrix
The definition of the spatial weights matrix W, where

the spatial relationships among spatial units are specified,
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is very important since estimation results critically depend
on the choice of this matrix. There are several approaches
to define spatial relations between two locations or spatial
units, but they can essentially be classified into two main
groups: spatial contiguity approach and the distance based
approach. Typical types of neighbouring matrices for spatial
contiguity approach are: the linear, the rook, the bishop, the
queen contiguity matrices W , and for the distance approach,
we have, for example, the k-nearest neighbours or the critical
cut-off neighborhood matrices [2].

• Contiguity Matrix: Represents a n×n symmetric matrix,
where wij = 1, when i and j are neighbours and 0 when
they are not. By convention, the diagonal elements are
set to zero. W is usually standardized so that all rows
sum to one, w̃ij =

wij∑
j
wij

, and operations with the W

matrix are an average over neighbouring values [2].
– Linear contiguity: Define wij = 1 for regions that

share a common edge to the immediate right or left
to the region of interest;

– Rook contiguity: Two regions are considered
neighbours if they share a common border, and for
these wij = 1.

– Bishop contiguity: Define wij = 1 for regions that
share a common vertex;

– Queen contiguity: Regions that share a common
border or a vertex are considered neighbours, and
for these wij = 1.

• Distance Approach: makes direct use of the
latitude-longitude coordinates associated with spatial
data observations [12].

– Critical Cut-off Neighborhood: Two regions i and
j are considered neighbours if 0 ≤ dij < d∗, with
dij the appropriate distance adopted between regions,
and d∗ representing the critical cut-off or threshold
distance, beyond which no direct spatial influence
between spatial units is considered.

– k-Nearest Neighbor: Given the centroid distances
from each spatial unit i to all units j �= i ranked as,
dij(1) < dij(2) < ... < dij(n − 1), for each k =
1, 2, ..., n− 1, the set Nk(i) = {j(1), j(2), ..., j(k)}
contains the k closest units to i, and for each given k,
the k-nearest neighbor matrix, has the form: wij =
1, j(i) ∈ Nk(i), i ∈ 1, ..., n, and is zero otherwise.

III. SPATIAL ECONOMETRICS MODELS FOR CONTINUOUS
DATA

Spatial autoregressive econometrics models are used to
model spatial data and provide a relatively complete treatment
from a classic perspective [2].

A. Spatial Autoregressive Model-SAR

A first-order spatial autoregressive model, in its simplest
form, is given by,

y = ρWy + ε

ε ∼ N(0, σ2In)
(1)

where y and ε are n × 1 random vectors, the components of
the ε vector are independent identically distributed (i.i.d.), y
corresponds to the spatially autocorrelated dependent variable,
W is an n × n spatial contiguity matrix, and ρ represents
the autoregressive parameter. This model tries to explain the
variation in y only as a linear combination of neighbouring
units with no other explanatory variables. It is frequently used
for checking residuals for spatial autocorrelation, without the
interference of any other [2].

The ordinary least squares estimation is inappropriate
method for a model that includes spatial effects. Applying
least squares to this model results on a biased estimator
for the spatial autoregressive parameter ρ, which leads to
inconsistency estimates. With,

ρ̂ = (y′W ′Wy)−1y′W ′y

one have,

E(ρ̂) = E[(y′W ′Wy)[−1y′W ′(ρWy + ε)] =

= ρ+ E[(y′W ′Wy)−1y′W ′ε] �= ρ.

In this model to estimate ρ we should use the maximum
likelihood estimator using a “simplex univariate optimization
routine”, in order to find a value of ρ that maximizes the
likelihood function [2]:

L(y|ρ, σ2) =

= 1
2πσ2(n/2) |In − ρW | exp{− 1

2σ2 (y − ρWy)′(y − ρWy)}.
Using this estimate of ρ, the estimate for the parameter σ2 is
provided by

σ̂2 = 1
n [(y − ρ̂Wy)′(y − ρ̂Wy)].

An extension of this spatial model is,

y = ρWy +Xβ + ε

ε ∼ N(0, σ2In)
(2)

where X is a n × k matrix of observed values of the
explanatory variables, Xj (covariates) and β is a k× 1 vector
of parameters that reflects the influence of the covariates
on the y variation over the spatial sample. This model is
also named “mixed regressive-autoregressive model” because
it combines the standard regression model with a spatially
dependent variable model [2]. As in the previous model, a
maximum likelihood iterative estimation is carried out in order
to obtain the autoregressive parameter ρ that maximizes the
likelihood function, and consequently allows the computation
of β̂ and σ̂2.

B. Spatial Error Model-SEM

The spatial error model is a regression model with spatial
autocorrelation in the residuals defined by

y = Xβ + u

u = λWu+ ε

ε ∼ N(0, σ2In)

(3)

where, y is an n×1 vector of dependent variable, X is a n×k
matrix of observed explanatory variables and β is a vector
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of parameters that reflects the influence of this variables on
variation of variable y. W is a known n×n spatial contiguity
matrix, the parameter λ is a coefficient on the autocorrelated
residuals u and ε is defined as in the previous model. Spatial
autocorrelation in the least-squares residuals can be detected
by an appropriate statistical test, like the one based on the
Moran’s I statistics.

C. General Spatial Model

The most general form of a general autoregressive spatial
model, that includes both the spatial lag term and a spatially
correlated error structure, is

y = ρW1y +Xβ + u

u = λW2u+ ε

ε ∼ N(0, σ2In)

(4)

where y contains an n × 1 vector of the dependent variable
and X represents an n × k matrix of observed explanatory
variables. W1 e W2 are known n × n spatial weight
matrices, defining spatial relations between spatial units,
using contiguity or the distance based approach, considering
ρ, β λ, u and ε as defined for the previous models. The log
likelihood function for this model, is given by

L = C − n
2 ln(|A|) + ln(|B|)− 1

2σ2 (e
′B′Be) (5)

where C denotes an inessential constant, e = (Ay − Xβ),
A = (In − ρW1), B = (In − λW2). Using the following
expressions for β and σ2,

β = (X ′A′AX)−1(X ′A′ABy)

σ2 = e′e
n

(6)

with e = By − Xβ, the log likelihood for this model can
be maximized through an optimization algorithm that allows
to obtain the values of ρ and λ. The values of the other
parameters β and σ2 are calculated as a function of the
maximum likelihood values of ρ, λ and the sample data in
y and X .

D. Spatial Durbin Model

There is a model where “spatial lag” of the dependent
variable, as well as a spatial lag of the explanatory variables
in matrix X , are added in a traditional linear model, given by

y = ρWy +Xβ1 +WXβ2 + ε

ε ∼ N(0, σ2In)
(7)

This model is called the spatial Durbin model, where y contain
an n × 1 vector of the dependent variable, X correspond to
the n×k matrix containing the observed explanatory variables
with an associated parameters vector, β1, W is the spatial
weight matrix, and ρ represents the parameter of the spatial lag
of the dependent variable. The matrix product WX represents
a spatial lag of the explanatory variables, with associated k×1
parameters vector β2.

The vectors of parameters, β1 and β2, can be expressed as

β1 = (X̃ ′X̃)−1X̃ ′y

β2 = (X̃ ′X̃)−1X̃ ′Wy,
(8)

with X̃ = XW X .
The log-likelihood function for this model is given by the

following expression,

ln(L) = C + ln |In − ρW | − n
2 ln(e′1e1 − 2ρe′2e1 + ρ2e′2e2)

(9)

where C denotes an inessential constant, e1 = y − X̃β1,
e2 = Wy − X̃β2, X̃ = XW X .
Given the value of ρ that maximizes the log-likelihood
function (9), ρ̂, the estimates for β1 and β2 in (7) can be
computed using

β̂ = (β1 − ρ̂β2) (10)

and an estimate for σ2 is obtained trough

σ̂2 = (y−ρ̂Wy−X̃β̂)′(y−ρ̂Wy−X̃β̂)
n . (11)

It should be noted that when this model is used, the
explanatory variables matrix X̃ can suffer from severe
collinearity problems in some applications, being necessary
take this possibility into account.

E. Lagrange Multipliers Tests

In this section some tests are presented some tests to choose
the best spatial autocorrelation model for the specific situation.

The Moran’s I test for spatial autocorrelation is not suited to
choose the best spatial autocorrelation model for the specific
form of spatial dependence in data. For this propose the
Lagrange Multiplier (LM) test (based on the residuals e of
a gaussian linear regression model) has proven to be more
adequate. This is due to the fact that this test statistics takes
a different form, whether the alternative hypothesis to the
null hypothesis, of non-existence of spatial autocorrelation, is
related with a spatial error or a spatial lag model [16] [17]
[18].

LM test for spatial error: the test statistics is

LMerror test =
eTWe

tr(WTW +W 2)
,

where W is the weight matrix and tr(·) is the trace
of the matrix. Under the null hypothesis, this statistics
is approximately qui-squared distributed with 1 degree of
freedom.

LM test for spatial lag dependence: the test statistics is

LMlag test =

=

(
eTWye/σ̂2

)2
(WXβ̂)TM(WXβ̂)/σ̂2 + tr(WTW +W 2)

,

where M = I −X(XTX)−1XT . Under the null hypothesis,
this statistics is approximately qui-squared distributed with 1
degree of freedom.
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Robust LM test for spatial error: This is a robust version of
the LM test for spatial error robust to the presence of spatial
lag dependence. The test statistics is

LMRerror test = LMerror test − LMlag test.

Under the null hypothesis, this statistics is approximately
qui-squared distributed with 1 degree of freedom.

Robust LM test for spatial lag dependence: This is a robust
version of the LM test for spatial lag dependence robust to the
presence of spatial error. The test statistics is

LMRlag test = LMlag test − LMerror test.

Under the null hypothesis, this statistics is approximately
qui-squared distributed with 1 degree of freedom.

LM test for spatial error and spatial lag dependence: the
test statistics is

LMSARMA = LMRerror test + LMRlag test.

Under the null hypothesis, this statistics is approximately
qui-squared distributed with 2 degree of freedom.

IV. GENERALIZED LINEAR MODELS WITH RANDOM
EFFECTS

The generalized linear models introduced by Nelder
and Wedderburn (1972) have been playing an increasingly
important role in statistical analysis, due to the large number of
models that they encompass and facility of analysis associated
with rapid computer development, in responding to situations
which are not adequately explained by the normal linear model
[19]. The generalized linear models with random effects are
a different way of modelling the outcome (y) and accounting
for covariates and random effects, either spatially structured
or not, to account for spatial autocorrelation in the analysis
of spatial data. The outcome (y) is assumed to come from a
distribution of the exponential family with mean parameter λi.

Exponential family: A family of probability density
functions or probability mass functions is said to bellong
to the exponential family if it can be
expressed as

f(y|θ) = h(y)c(θ)exp(
∑k

i=1 wi(θ)ti(y)),
here h(y) ≥ 0, t1(y), ..., tk(y) are real-valued functions
of the observation y, not dependent on θ, c(θ) ≥ 0
and w1(θ), ..., wk(θ) are real-valued functions of the
possibly vector-value parameter θ, not dependent on y.

Many common distributions belong to the exponential family,
including the discrete distributions, binomial, Poisson, and
negative binomial, and continuous distributions, normal,
gamma and beta.

The relationship between λi and the linear predictor on a
vector of covariates Xi is established through a link function
g(.):

g(λi) = ηi = Xiβ.

Random effects may be included in the model through:

ηi = Xiβ + μi + εi,

where μ = (μ1, ..., μn) is an unstructured random component,
multivariate Normal distributed with zero mean and diagonal
variance-covariance matrix σ2In; ε = (ε1, ..., εn) is a
spatially structured random component, multivariate Normal
distributed with zero mean and variance-covariance matrix Σ.
Different structures for Σ have been proposed to model spatial
autocorrelation.

For the particular case of Gaussian models (presented in the
previous section), Σ has a SAR specification, with

Σ = σ2(In − ρW )−1(In − ρW ′)−1.

Another possible specification is the conditional
autoregressive (CAR) specification, with

Σ = σ2(In − ρW )−1.

In both cases, W is a symmetric matrix.

The spatial econometrics models, where the
variance-covariance matrix has a SAR specification, can
be expressed as generalised linear model with random effects.

Although inference is typically carried out with the
classical maximum likelihood method, eventually needing
some numerical methods, it can also be done under the
Bayesian paradigm, with pretty much the same results. On
a Bayesian setting, inference for these models often requires
the use of numerical techniques, such as Markov Chain
Monte Carlo (MCMC) methods [6]. In the next sections the
conditional autoregressive specification will be considered to
account for the spatial autocorrelation in data, explored in a
hierarchical Bayesian framework.

V. SPATIAL ECONOMETRICS APPROACHES FOR COUNT
DATA

For studying the spatial patterns in count data, several
types of spatial models may be employed, namely, trough
the classical spatial econometric models [20], employing a
Bayesian hierarchical model [21], or considering regression
models for count data in a Bayesian framework [22] [23].
Another spatial econometric approach, that incorporates spatial
lag autocorrelation in modelling counts is also available, the
spatial autoregressive lag model of counts, recently developed
by Lambert, Brown and Florax in 2010 [7].

A. Traditional Econometric Methods

For modeling count data using spatial econometric models
for continuous data, by means of an spatial autoregressive
(SAR) model, or a spatial error (SEM) model, or even with
both, spatial lag and spatial error considered simultaneously
through the general spatial model, it is necessary to convert
the count dependent variable into an approximately continuous
variable. These models were designed for continuous data,
demanding count data transformation to meet the model’s
assumptions, as well as for making use of the tests described
in Section III-E which rely on a linear model.



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:10, No:1, 2016

354

1) From a Poisson Log-linear Model to a Linear Log
Model: Considering a Poisson distribution for the number of
count outcomes observed in each spatial unit the most widely
used transformation is the log transformation, taking into
account that the dependent variable needs to be converted into
a rate variable by inclusion of an offset. A linear model is
then fitted to the transformed data, and the conversion into a
rate variable allows comparisons between the results obtained
trough Poisson log-linear model (fitted before the covariates
had also to be transformed) and the spatial econometrics
models, as exemplified below.

Consider the Poisson log-linear model

Y ∼ Poisson(offset.var × exp(β0 + β1x1 + . . .+ βkxk)),

for which

E[Y ] = μY = offset.var × exp(β0 + β1x1 + . . .+ βkxk)

⇔ log

(
E

[
Y

offset.var

])
= β0 + β1x1 + . . .+ βkxk

Consider now the usual log transformation to be performed to the Poisson
data in order to achieve symmetry:

W =

{
log(Y ), Y > 0

0, Y = 0

Focus on the first branch of W definition. Here:

W = log(Y ) = log(μY ) + log

(
1 +

(Y − μY )

μY

)
≈

(2nd order Taylor expansion of the log)

≈ log(μY ) +
(Y − μY )

μY
− (Y − μY )2

2μ2
Y

So,

E[W ] = E[log(Y )] ≈

≈ log(μY ) + E

[
(Y − μY )

μY

]
− E

[
(Y − μY )2

2μ2
Y

]
=

= log(μY )− 1

2μY
=

= log(offset.var × exp(β0 + β1x1 + . . .+ βkxk))−
− 1

2offset.var × exp(β0 + β1x1 + . . .+ βkxk)
=

= log(offset.var) + (β0 + β1x1 + . . .+ βkxk)−
− exp(−β0 − β1x1 − . . .− βkxk)

2offset.var
≈

(1st order Taylor expansion of the exponencial)

≈ log(offset.var) + (β0 + β1x1 + . . .+ βkxk)−
− 1− β0 − β1x1 − . . .− βkxk

2offset.var

= log(offset.var) +
{
β0

(
1 +

1

2offset.var

)
− 1

}
︸ ︷︷ ︸

Intercept

+

+ β1x1

(
1 +

1

2offset.var

)
+

+ . . .+ βkxk

(
1 +

1

2offset.var

)

Consequently, and because in this particular application
P (Y = 0) is very small (there are always accidents!) so that
E[W ] can be well approximated for the value above, the
coefficients of the linear model are approximately the same
as the coefficients of the Poisson log-linear model provided
that the values of the covariates x1, x2, . . . , xn are multiplied
by

(
1 + 1

2offset.var

)
.

B. Bayesian Hierarchical Models for Count Data

Data for which the spatial dimension is relevant, when
considered within a regular or irregular lattice, generally would
revel spatial autocorrelation, with closer spatial units having
similar values. For count data defined into spatial units of
the lattice, there are some alternative models which can be
applied, wherein the spatial dependency structure is defined
conditionally. The large-scale variation data is normally
integrated in the model through a regression component which
is added to the structure of the mean of observations.

Part of the spatial autocorrelation can be modeled by
including known covariate risk factors in a regression model,
but it is common for spatial structure to remain in the residuals
after accounting these covariates effects. For modeling the
residual autocorrelation, the most common feature is to expand
the linear predictor with a set of spatially correlated random
effects, as a part of a Bayesian hierarchical model [21].

The referred random effects are usually represented by
a conditional autoregressive model (CAR) [24], which
induces a priori spatial autocorrelation through the contiguity
structure of the spatial units. Different CAR prior distributions
commonly used for modeling spatial autocorrelation have
been establish in the statistics literature, from the intrinsic
and Besag, York and Mollié (BYM) proposals [24], as well
as the alternatives developed by Leroux, Lei and Breslow
[25] and Stern and Cressie [26] where each model is a special
case of a Gaussian Markov random field. The next subsection
describes and explains different Bayesian hierarchical models
for Poisson count data.

1) Hierarchical Log-Poisson Model: Considering n spatial
units on a spatial domain, let y = (y1, ..., yn)

T and E =
(E1, ..., En)

T be, respectively, the observed cases and the
expected population under risk for the n spatial units, where
Yi come from a Poisson distribution, with expected value,
E(Yi) = Ei θi. Let Xi = (Xi1, ..., Xip)

T be a set of p
covariates associated with spatial unit i, for i = 1, ..., n,
the first of which corresponds to the intercept term, β =
(β1, ..., βp)

T be the corresponding regression coefficients, and
log(E) = (log(E1), ..., log(En))

T be a vector of known
offsets. The expected values of the responses are related to the
linear predictor via an invertible link function, that in this case,
is the natural log function, having λi = log(Ei θi), i = 1, ..., n
the log relative risks.
The hierarchical Log-Poisson Model is defined as follows,
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[27], [28]:

Yi|λi ∼ Poisson(exp(λi))

λi = XT
i β + εi + log(Ei)

ε ∼ Normal(0, σ2D(ρ));

(12)

In (12), Ei = exp(Oi), ε = (ε1, ..., εn)
T is a set of random

effects taken to follow a priori a conditional auto-regressive
(CAR) model [29], with covariance matrix D(ρ) = (I −
ρMW )−1M , where W = ((wij)) is the n × n contiguity
matrix, that defines the neighbouring structure, and M =
((mij)) is a n× n diagonal matrix whose i-th diagonal entry
is given by 1

wi+
, with wi+ =

∑n
j=1 wij .

The parameter ρ defines the extent of spatial dependence
and σ2 is the measure of global variability. The main interest
is to infer the true relative risks θi’s and to estimate the model
parameters δT = (βT , ρ, σ2). The parameters of interest are
the θis when the objective is mapping, however for studying
spatial association between variables and spatial dependence,
the parameters β and ρ are the main interest.

A simpler hierarchical Log-Poisson model only including
unstructured random effects, the independence model, is
first presented. However, when the residuals display spatial
autocorrelation, this is insufficient and the spatial structure is
considered through a global CAR prior, here considered with
two different approaches, the BYM and the Leroux models.
These methods are implemented in a Bayesian setting, where
inference is based on Markov chain Monte Carlo (MCMC)
simulation.

The CAR specification relies on the prior conditional
distribution on the spatial error terms, where the distribution of
εi conditioned on ε−i, where ε−i = (ε1, ..., εi−1, εi+1, ..., εn),
is given, and only the neighbours of areas i, according to the
chosen spatial structure, are considered. CAR prior are then
specified as a set of n univariate full conditional distributions,
f(εi|ε−i), for i = 1, ..., n, rather than via the multivariate
specification.

1.1) The Independence Model, [28]

The independence model accounts for possible effects of
over-dispersion, for Poisson model, if the covariates included
in model (12) have removed all of the spatial structure in
the response, and can be implemented with the independence
prior,

μi ∼ N(0, σ2),

σ2 ∼ U(0,Mσ),

(13)

where μi replaces εi in (12). The the variance parameter is
assigned an uniform prior on the interval (0,Mσ), with Mσ

large (here taken to be 1000).

1.2) Besag-York-Mollié (BYM) Model [24]

The CAR prior proposed by the intrinsic model [24] is given
by

εi|ε−i ∼ N

(∑n

j=1
wijεj∑n

j=1
wij

, σ2∑n

j=1
wij

)
. (14)

The conditional expectation is the average of the random
effects in neighbouring areas, while the conditional variance
is inversely proportional to the number of neighbors. τ2 is
assigned an uniform prior on the interval (0,Mτ ), with Mτ

large (here taken to be 1000).
The limitation with this model is that it can only represent

strong spatial autocorrelation and produces random effects
that are excessively smooth. Therefore, an extension of
this model that allows for both, weak and strong spatial
autocorrelation, is obtained by replacing εi in (12) by μi+ εi,
with μi defined by (13) and εi is defined by (14). This model
is known as the BYM model.

1.3) Leroux, Lei and Breslow Method [25]

The previous model requires two random effects to be
estimated, for each data point, whereas only their sum is
identifiable from data. To get through this, [25] proposed an
alternative, the CAR prior for modeling spatial autocorrelation
using a single set of random effects. The prior is given by

εi|ε−i ∼ N(
ρ
∑n

j=1
wijεj

ρ
∑n

j=1
wij+1−ρ

, σ2

ρ
∑n

j=1
wij+1−ρ

). (15)

where ρ is a spatial autocorrelation parameter, with ρ = 0
corresponding to independence and ρ = 1 corresponding to
strong spatial autocorrelation. An uniform prior on the unit
interval is specified for ρ, ρ ∼ U(0, 1), and the uniform prior
on the interval (0,Mτ ) is adopted for τ2.

When ρ = 1 the independence model is obtained.
The CAR priors defined by these models enforce a single

global level of spatial smoothing for the set of random effects,
which, for the Leroux model, is controled by ρ.

C. Spatial Econometrics Models for Count Data -
SAR-Poisson Count Model

The methodologies just presented for describing the
complex dynamic that result from the existence of spatial
interaction in count data do not incorporate a spatial lag
process in the spatial autoregressive count models. To fill this
gap, recent developments in spatial econometrics approaches
for count data have been proposed, suggesting a count
estimator that models the response variable as a function
of neighbouring counts. According with [7] “A Spatial
Autoregressive Poisson model (SAR-Poisson) was investigated
in a series of Monte Carlo experiments and estimated using a
two-step limited information maximum likelihood approach
” [30]. This model includes a spatially lagged dependent
variable as a covariate maintaining the required distributions
assumptions as well as the consistency of the linear SAR
model commonly used in spatial econometric literature.
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D. Regression Models for Count Data

Different methods for understanding geographical variation
in counts, that evidencing some kind of heterogeneity are
also available. Modeling strategies based on the use of
spatial random effects models are used in order to capture
unobserved spatial heterogeneity in the data, in a Bayesian
perspective. Regression models, such as, the negative binomial
regression, the generalized Poisson regression or the zero
inflated regression models are considered [23], [22].

E. Another Possible Directions for Count Data

An alternative approach is suggested by Bhati [20], [31]
to overcome the fundamental assumptions in traditional
statistical methods as well as the difficulty, in certain
situations, of assuming prior distributions in the Bayesian
hierarchical models. He suggests the use of the cross entropy
method to avoid parametrical distributional assumptions.

It is still being considered to use spatial point patterns
models for these type of data, since these constitute a valid
alternative in the aim of understanding temporal and spatial
effects [13]. Considering as an object of interest the spatial
location of events under study, i.e., the spatial location where
the phenomenon of interest occurred, to be modeled. The
phenomenon is described by occurrences, identified as points
located in space over time, in order to study the spatial and
temporal distribution testing hypotheses about the observed
pattern.

VI. ALTERNATIVE WAY OF DOING BAYESIAN INFERENCE
FOR SPATIAL ECONOMETRICS MODELS - INLA

In a Bayesian setting, although the spatial econometric
models can be fitted using methods and standard software for
generalised linear models with random effects, it is sometimes
extremely computationally demanding. As such it might worth
explore another way of fitting these models, by using INLA,
the Integrated Nested Laplace Approximation, implemented
in R-INLA [32]. R-INLA gives an alternative way of
accomplishing Bayesian inference to spatial econometrics
models, not yet explored and potentially a very interesting
approach [8].

VII. CONCLUSION

Carrying out this research work, it was realized that
the currently available models are based on the normality
assumption, which is, sometimes, inappropriate. In this
context, it is intended to extend some of the existing models,
in order to be able to model non-continuous data, within a
Bayesian hierarchical framework, with estimation methods and
specific tests that will make them useful. It was further realized
that the tests available for spatial autocorrelation heavily
depend on a linear model assumption, which is frequently not
appropriated. It is probably needed a generalization of the tests
for a vaster class of models as, for example, the generalized
linear models.

For future work, it is also intended to continue studying
and applying spatial econometric models, for modelling
data with spatial dependencies or spatial heterogeneities,
through classical inference methodologies, as well as with
Bayesian methods. It is an objective to proceed with the
study, development and implementation of Bayesian spatial
econometric models, including the Bayesian regression model,
the Bayesian first order autoregressive model, as other
Bayesian spatial autoregressive models [11], as well as gaining
more insight on Bayesian hierarchical models for spatial data
[21], in a econometric approach, heading for “spatial Bayesian
hierarchical econometric models” for processing of count data.
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