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Exploring Counting Methods for the Vertices of
Certain Polyhedra with Uncertainties
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Abstract—Vertex Enumeration Algorithms explore the methods
and procedures of generating the vertices of general polyhedra
formed by system of equations or inequalities. These problems of
enumerating the extreme points (vertices) of general polyhedra are
shown to be NP-Hard. This lead to exploring how to count the
vertices of general polyhedra without listing them. This is also shown
to be #P-Complete. Some fully polynomial randomized
approximation schemes (fpras) of counting the vertices of some
special classes of polyhedra associated with Down-Sets, Independent
Sets, 2-Knapsack problems and 2 x n transportation problems are
presented together with some discovered open problems.
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I. INTRODUCTION

ERTEX ENUMERATION (VE) algorithms were of

special interest in the 60s, 70s, 80s and 90s [1]-[4]. This
is partly due to general real life applications of the methods.
Dyer [2] was able to show that for general polyhedra there is
no known polynomial methods for enumerating the vertices.
This lead to the exploration of counting the extreme-points
(vertices) of general polyhedra without listing them. This is
also shown to be #P-Complete [5]. Researchers [1], [5] and [6]
in recent time concentrated on approximately counting the
vertices of some selected classes of polyhedra using known
methods of fully polynomial randomized approximation
Schemes (fpras). In this paper, some fpras for counting the
vertices of polyhedra associated with Down-Set, Independent

Set and 2-knapsack problems and2 X7 transportation
problems are presented and in the process some newly
discovered open problems are raised.

One of the main problems encountered of vertex
enumeration and/or counting is that of degeneracy. By

definition, a vertex of a polyhedron P is said to be
degenerate if there are more number of associated inequalities
that are binding. Perturbation technique could be employed to
deal with polyhedera that are not highly degenerate. This is
fully explained in [4]. But, for highly degenerate polyhedera,
perturbation technique does not completely solve the problem.
This is for the simple reason that many-to-one correspondence
might emerged between vertices of the perturbed polytope and
the vertices of the original polyhedra. Details of these
techniques are available in [1] and [4].
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This article consists of sections that discussed some real life
applications of vertex enumeration methods and counting.
Some relevant definitions and notations are given. Some
introductory methods of approximately counting the vertices
of polyhedra associated with polynomially many inequalities,
such as, polyhedron associated with: partial order;
independent sets; binary knapsack problems; and 2 by n
transportation problems are presented.

An important question to ask is: what are the real life
applications of vertex enumeration and counting?

II. APPLICATIONS

Vertex enumeration and counting problems have many real
life applications. Dyer [4] was able to present different types
of applications of vertex enumeration procedures which can be
summarized as: “dual representation” which described the set
of solutions to the defined inequalities of polytopes
represented as convex hull. Another application is that of
“near-optimal” solutions to a linear program which is used in
“sensitivity analysis”. Multi-parametric linear program for a
“multi-criterion” linear programming is used for complex
decision making.

A more complex application is in the “game-theory” such
as described in two-person bi-matrix games. Non-degenerate
cases of vertex enumeration and counting are used in “fixed-
charging” problems which is applicable for generalized linear-
programming in which each variable has a non-negative fixed-
charge which is incurred if it is non-zero in the solution.
Details of these application methods are described in [3] and

[4].

1. DEFINITIONS / NOTATIONS

Polyhedron: A polyhedron P is defined to be a set
satisfying the following:

P={xeR":Y ayx; <bj=12...,m+n} (1)

5
J=1

Vertex: A vertex V of the Polyhedron P is defined to be
the unique point of intersection of at least /1 of the binding
hyperplanes H , where:

H:{xER":ZaUx/:b,.}, i=12,...m+n @

J=1

64



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:10, No:2, 2016

#P-Counting Problem: A counting problem s .x " - v is
said to belong to the complexity class #P if there is a

polynomial time predicate y:X Ty T *»{0,1} and a

polynomial P such that Vxez* we have:

f(x)z‘{wez* :)((x,w)AM Sp(‘x‘)}‘ (5], [6].

Markov Chain (MC): A sequence ( X, eQ)”, of random
variables is a Markov Chain (MC) with state space Q, if:

_ _ _ N _ _ 3
P,y =], =5 X,y =3 X, = ] =Pri g =)y =x] )

YteN ,

and,

X, X, e

X, €Q.

Some approximation methods for counting the extreme
points of certain classes of polyhedra are presented in detail in
[1]. These methods are classified as approximately counting
the vertices of polyhedron with polynomially many
inequalities.

IV. POLYHEDRA WITH POLYNOMIALLY MANY INEQUALITIES

What it meant by 0-1-Permanent?
0-1-PERMANENT: The permanent of 72X7 non-negative
matrix A4 = (a(i, j))is defined as:

4
per(4) =Y [ ati.x () @

where, the sum is over all permutations 7T of {1,2,......n}. If

A is 0,1 matrix, then the permanent is calledo — | - permanen

Claim: There is a 1-1 correspondence between the number of
perfect matching and the (0-1- vertices of the polyhedra
formed from the following:

z%.xij =1, (jzlaz» ------ ,]’l) (5)

Sayx, =10 (0= 1,250 ) (6)

Based on the claim we have:
Proposition: There exists a fully polynomial randomized

approximation scheme (fpras) for counting the 0—1— vertices
of a polyhedron formed by the permanent of (5) and (6).

V.PARTIAL ORDER (PO)

A relation R on aset A is called a partial order if it is
reflexive, antisymmetric and transitive.

A. Down Set in a Partial Order (PO)
A Down-Set S is a subset,ScU such that if jeS and
i < j then i € S (where <is the given partial order)

Definition: An mX#»n integral matrix A s totally
unimodular (TU), if the determinant of each square submatrix

of A isequalto0,1or-1.
Definition: For a given partial order,< consider the
polyhedronin R" :

PO ={x:x, <x;ifi<j,where0<x, <LVk}  (7)

The coefficient matrix, 4 D is a two per row matrix, each
with one +1 and one -1.

A directed bipartite graph G is a graph whose nodes are
partitioned into two sets such that all the arcs in the graph are
directed from a node in the first set — known as origin to a
node in the second set —known as destination. Fig. 1 shows a
bipartite graph G with a partial order (PO) and the relationship
between an Independent Set and the corresponding Down-Set
(S). The partial order (PO) on the graph, S, is obtained such
that: a < e because there is an arc between node a and node e.
Similarly, b <e, b <f, ¢ <f ¢<g, d<gand d < h. For
example, the Independent Set can be chosen to be {a, f g}
which is complemented on the bottom to give Down-Set: {b,
¢, d f, and g}.

Proposition: For a given partial order, the polyhedron py
given in (7) is integral with 0,1 — vertices .

Theorem: There is a 1-1correspondence between Down-Sets
and the vertices of P """ defined in (7).

Proof: If S is a Down-Set, let the vector x° be defined by,
x; =1ifi € §,x] =0 otherwise. Since S is a Down-Set,

x* lies in PV . Also, it exactly satisfies Vlof the inequalities
0<x, <1, and hence is a vertex. Clearly, this argument can be

reversed, since all vertices of P (D have coordinates 0 and 1.

QED [1].

VI. INDEPENDENT SET
Definition: An Independent Set of a graph G = (V' ,E) isa

subset ¥V * < V of vertices such that each edge in K is

incident on at most one vertex in ¥ .

The problem of computing a maximum independent set in a
graph is NP — hard problem [7].

Dyer and Greenhill [8] have shown that the problem of
counting Independent Set in graphs with maximum degree 3 is
#P-Complete. An example of Independent Set with
complementary properties to Down-Sets (S) is given in Fig. 1.
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Fig. 1 Complementary relation between elements of IS and S

Claim: Any Independent Set (IS) in a bipartite graph G can
be complemented to give a Down-Set S in the associated
partial order.

Proof: This follows directly from the fact that Vx € IS
there exactly no y e IS such that, X <) i.e. there is no edge

between Xand ' . Also, we have,Vy e § xe€S iff X<y

so there is no edge between ) and any x ¢ S. QED [1], [9].

Definition: The polyhedron associated with Independent Sets
(IS) in a bipartite graph G = (V, E') is given as:

Po=f +y, LV ) eEi=12,.mj =120} ®)

Corollary: If A" is a matrix associated with Independent
Set, then it is totally unimodular (TU).
Proof: For j on the bottom put x,=l-y, (j=12..m) then we

have the polyhedron for the corresponding partial order. QED
[1].

From the corollary and proposition it can be concluded that
the Down-Sets and Independent Sets are set of integral
vertices. The matrices associated with the polyhedra whose
sets of solutions (vertices) are Down-Sets or independent sets
are totally unimodular (TU), because they have at most two
non-zero per row or column that are +1 and -1. It is not yet
known whether there is an fpras for Down-Set or Independent
set, hence the following open problem.

Open Problem: Is there an fpras for counting Down-Sets in
a partial order or Independent Sets in a bipartite graph? [9].

VII. BINARY-KNAPSACK PROBLEM
The 0,1 — Knapsack problem also called binary-Knapsack

problem is a one-constraint integer programming problem
which can be represented as:
Maximize:

z= Zn:".ij ©)

Subject to:

where, ¢ < x, < 1 and xj,b,cj,aj eZ for(j=12,...5) [4, p.
265].
Definition: Let a = (@), and b be real numbers, then the

set of solutions to (9) can be denoted by:

Q={x:ax<h}
where: x = (x)/_ isa 0—1—vector and;

; (10)

The problem of computing |Q| is #P-complete, hence the

need to find a good approximation algorithm.

Proposition: Let px —(xeR" :z":a’_xi <b be a polyhedron
i=1

where 0 < x, <1. The number of non-integer vertices of P K

is less than or equal to 72 times the number of integer vertices.
Proof: This is true as every non-integer vertex is adjacent on
P*" 1o an integer vertex and every integer vertex has at
most 7 neighbors [1].

Theorem: There exist an fpras for counting all vertices of
non-degenerate 0 —1— Knapsack polyhedra.

Proof: This follows from general results of [1] and [6].

VIIL. 2 X 72 TRANSPORTATION POLYHEDRA
It has also been established that the problem of counting all
vertices of transportation polyhedra is #P-complete [2]. Is it
possible to present approximate counting procedure for the
vertices of a transportation polytope also known as 2xn
transportation polyhedra?
Definition: Consider # origin points, where i has a supply,

S8, of units of a particular item (commodity). In addition, there

are n destination points, where destination j requires d j
units of commodity. It is assumed thats,,d; > 0. Associated

with each link (i, j) from origin i to destination J , there is a

unit cost Cj; for transportation. The problem is to determine a

feasible “shipping pattern” from origins to destinations that
minimizes the total transportation cost. This problem is known
as Hitchcock or the transportation problem. It is assumed that
the total supply equals total demand, that is, the problem is
balanced. The problem is that of counting the extreme points
of:

P(mmsp) — {X . A(zransp)x — b} (1 1)

where, 4“*) is (m+ n)x (mx n) node-arc incidence matrix,

it is a 2 nonzero per column matrix, each nonzero is either +1
or-1.
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Open Problem: Give fpras for enumerating extreme points of

the transportation polyhedra pransp)

IX. CONCLUSION

Some literature reviews are given for approximately
counting the extreme points (vertices) of certain polyhedra
associated with 0-1 Permanent, Down-Sets (S) in non-bipartite

graphs, Independent-Sets, 0-1 Knapsack Problems and 2 X n
transportation problems. Some open problems are suggested
and it might be a good line of future research to explore proofs
of these open problems posed in this paper.
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