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A Survey on Positive Real and Strictly Positive Real
Scalar Transfer Functions

Mojtaba Hakimi-Moghaddam

Abstract—Positive real and strictly positive real transfer
functions are important concepts in the control theory. In this paper,
the results of researches in these areas are summarized. Definitions
together with their graphical interpretations are mentioned. The
equivalent conditions in the frequency domain and state space
representations are reviewed. Their equivalent electrical networks are
explained. Also, a comprehensive discussion about a difference
between behavior of real part of positive real and strictly positive real
transfer functions in high frequencies is presented. Furthermore,
several illustrative examples are given.

Keywords—Real rational transfer functions, positive realness
property, strictly positive realness property, equivalent conditions.

I. INTRODUCTION

HE concept of Positive Real (PR) transfer functions as a

substantial property of driving point impedance of passive
electrical networks is developed by Otto Brune in 1930 [1],
[2]. A generalization of the necessary and sufficient conditions
for PR transfer functions are extracted in [3]. Also, in [3] it is
shown that impedance, admittance and hybrid matrices of
multi-port passive electrical networks are PR. In addition, in
[4] the equivalent conditions for PR transfer function matrices
in the state space representation are deduced which nowadays
it is called positive real Lemma.

In 1963, Popov introduced the notion of hyperstability in
the control theory and consequently the concept of positive
realness is applied in the control literature. In fact, he showed
that a linear time-invariant system is hyperstable system if and
only if its transfer function is PR. Also he developed the
concept of strictly positive real (SPR) transfer functions and
showed that a linear time-invariant system is asymptotically
hyperstable system if and only if its transfer function is SPR
[5]. In addition, lossy electrical networks are introduced which
contain SPR driving point impedance [6]. Thus PR and SPR
transfer functions have been extensively used in the various
field of control such as adaptive control [7]-[9], optimal
control [10]-[11], nonlinear control [12]-[14], robust control
[15]-[20] and even intelligent control [21]. Furthermore, in
[12] the equivalent conditions for SPR transfer function
matrices in the state space representation are presented which
is called Kalman-Yakubovich-Popov (KYP) Lemma.

The paper organized as follows: Section II devoted to PR
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transfer functions, Section III to SPR transfer functions,
Section IV to passive electrical networks, Section V to high

frequency behavior of Re(G(jw)), Section VI to PR Lemma

and SPR Lemma, and finally Section VII to conclusion.

II. PR TRANSFER FUNCTIONS

We know if a linear time-invariant (LTI) system is lumped,
then its transfer function will be rational function of complex
variables. An arbitrary rational transfer function can be
expressed as

Sm+bm718m—l+.“+bls+b0
G(s) = k— = k=0 (1
s +a, s +..+asta,

Thus, G(s) can be classified as [30]:

1) G(s) is improper < n < m < |G’(<>o)| =00

2) G(s) is biproper < n = m < G(co0) =nonzero constant
3) G(s) is proper < n > m < G(co0) = constant

4) G(s) is strictly proper < n > m < G(ox) = 0
Assumption 1. Hereafter, we consider G(s) in (1) is a
rational transfer functions with real coefficients in numerator
and denominator and simply we say that G(s) is a real

rational transfer function.
Definition 1. [4] A real rational transfer function G(s) is called

PR if Re(G(s))>0 for Re(s)>0.

In fact, each real rational transfer function G(s) which maps
closed right half plane (CRHP) of s—plane to a subset of
CRHP of G(s)—planeis a PR transfer function. Fig. 1 shows

the geometric interpretation of above definition.

Alm{s} hIm{G(s)}

PR Mapping

o)

Fig. 1 Geometric Interpretation of Positive Realness
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As a result, if G(s) and H(s) are PR then H(G(s))is PR.
Since 1/s is PR, so1/G(s)is PR. Also, if G(s)and H(s)are
PR then G(s)+H(s)is PR. Subsequently, if G(s)and H(s) are

PR, then (1/G(s)+H(s))"'=G(s)/(1+G(s)H(s))is PR, and
hence the following corollary is concluded.
Corollary 1. [22] The closed loop transfer function resulted
from negative feedback interconnection of two PR transfer
functions is PR.

Three important properties of a PR real rational transfer
function G(s) mentioned in (1) are as follows [31]:
Property 1. All poles are in the closed left half plane (CLHP)
and each of poles on the imaginary axis is a simple pole and
the associated residue is positive.
Property 2. All zeros are in the closed left half plane (CLHP)
and each of zeros on the imaginary axis is a simple zero.
Property 3. The relative degree (n—m ) is restricted to -1, 0,
and 1.
Definition 2. G(s) is marginally stable if each of whose poles
is in the CLHP and each of whose poles on the imaginary axis
is a simple pole.
Theorem 1. [12], [31] A real rational transfer function G(s) is
PR if and only if
1) G(s) is marginally stable,
2) Any pole of G(s)on the imaginary axis is a simple pole

and the associated residue is positive, and
3)  Re(G(jw))>0,YweR for which jw is not a pole of G(s).
Note that the notation Re(.) means real part.
Definition 3. G(s)is stable if each of whose poles is in the
open left half plane (OLHP).
Lemma 1. Let G(s) is stable, then it is PR if and only if its
nyquist curve is in CRHP.
s+ . .

Example 1. LetG(s) = m . It is clear that G(s) is
marginally stable with three poles on the imaginary axis where
their associated residues are positive. On the other hand,
Vw € R—{0, £ j2} we have Re(G(jw)) = 0; thus G(s) is PR.
Example 2. Consider the following stable transfer functions.
Their nyquist curves are depicted in Fig. 2. Based on Lemma
1, G(s)is PR and H(s) is not PR.

§+s+1
s +s+5

§ +s+3
$£+2s+1’

G(s) = H(s) =

Remark 1. Note that the stability condition in Lemma 1 is a
necessary condition. For example, nyquist curve of G(—s) is
the same as nyquist curve of G(s) whereas it is not stable and

hence it is not PR.

Nyquist Diagram Nyquist Diagram
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Fig. 2 Nyquist diagram of G(s) (left) and H(s) (right)

Theorem 2. [23] Let G(s)=d-+c(sI—A)"'b with d>0. Then

G(s) is PR if and only if:

1) All residues of G(s)at poles on the imaginary axis are
positive; and

2) The matrix (A—(1/d)bc)A has no eigenvalue of odd
algebraic multiplicity on the open negative real axis.

Theorem 3. [23] Let G(s)=c(s[—A)™'b and p be the smallest

odd integer such that cA”b = 0. Then G(s) is PR if and only if:

(D ea>0;

2) All residues of G(s)at poles on the imaginary axis are
positive; and

3) The matrix A(I—(1/(cA’))A’bc)A has no eigenvalue of

odd algebraic multiplicity on the open negative real axis.

III. SPR TRANSFER FUNCTIONS

In this section, we review definitions and results in the field
of SPR transfer functions. Hereafter, wherever we use SPR it
means “SPR in the KYP sense” and wherever we use WSPR
(Weak SPR) it means “SPR in the Circuit Theory sense”.
Definition 4. [12] G(s) is SPR, if G(s—¢) is PR for some £>0.

A geometric interpretation of SPR transfer functions is
depicted in Fig. 3 [25].

Alm{s} Am{G(s)}

SPR Mapping

Rels}

€
>

'

'

'

'

'

'

'

Fig. 3 Geometric Interpretation of SPR in the KYP sense
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Considering the geometric interpretation depicted in Fig. 3,

it is clear that if G(s—¢,) is not PR, then G(s—¢) will not PR

for any €>¢,, so Definition 4 can be modified and restated as

follows.

Definition 5. [25], [27] G(s)is SPR, if G(s—¢) is PR for
sufficiently small £>0.

Moreover, we have the following corollaries.

Corollary 2. [27] If G(s)is SPR, then there exists an £>0
such that G(s—¢) is PR for each € € (0, E*] and there is not
any e>¢ such that G(s—¢) is PR.

Corollary 3. [27] Consider G(s) in (1) is SPR where p, and

%, are whose poles and zeros respectively, then we have

e <& =min {mm |Re(pZ )|7 min |RE(2,)|} (@)
i J :

Example 3. Let G(s)= It is easy to verify that

s+1
s+2°

st+a
Corollary 4. [35] G(s)=————is PR (SPR) if and only if
s c

+bs+
a,b,c, and (b—a) are nonnegative (positive). Also, we have

e*:mm{au , (bfa)}.

s+4

Let G(s) = ———
Example 4. Let (s) YIS

. It is clear that G(s) is SPR

and = = 1 whereas e, =2
Definition 6. [26] The proper and real rational transfer
function G(s) is WSPR if
1) G(s)is stable, and
2) Re(G(jw)) > 0,Vw e R
s +s+1

. G(s) = ——.
Example 5. Let () R

It is easy to verify that

RB(G(]'W))_MZO, thus G(s) is not WSPR because
Rﬁ(G(j\/g))ZO , however, G(s)is PR.
Remark 2. Note that if G(s) is improper then it is WSPR if in

addition, the associated residue of whose simple pole at
infinity be positive,

Corollary 5. [27], [28] If G(s)is biproper, then it is SPR if
and only if it is WSPR.

W2y

Corollary 6. [27], [28] If G(s) is strictly proper, then it is SPR

if and only if it is WSPR and in addition, the summation of
whose zeros be not equal to the summation of whose poles.

Example 6. Consider the transfer function G(s) in Example 2.

It is stable and whose nyquist curve where depicted in Fig. 2 is
in ORHP; thus, it is WSPR. Also, from Corollary 5 implies
that this transfer function is SPR.

Theorem 4. [27] Let G(s)=d+c(sI—A)"'b be a real rational
transfer function with minimal realization; then G(s) is SPR if
and only if it is WSPR and one of the following conditions is
satisfied

1) G(x)=d>0;o0r

2) G(oo) = d = 0,and —cAb > 0.

We know if the proper transfer function G(s) is PR, WSPR
or SPR, then G(0c0)>0. Thus we have the following theorem
Theorem 5. [23], [24], [29] The real rational transfer function
G(s)=d+c(sI—A)"'b is SPR if and only if one of below cases
is satisfied
Case 1 (d >0): 4 is stable, and the matrix (A—(1/d)bc)A has

no eigenvalues on the closed negative real axis.
Case 2 (d=0): ¢b>0,—cAb>0, A is stable, and the matrix

(A4,—(1/d,)b,c,)A has no eigenvalues on the closed
negative real axis where (A,,b,,¢,,d,) is a realization of
cb/G(s)—s .

Theorem 6. [33] The transfer function G(s) = c(sI — A) b is

SPR if and only if G(s) = (s — A™)7'b is SPR.

IV. PASSIVE ELECTRICAL NETWORKS

We know a passive electrical network is an electrical
network which is made up of positive elements including
resistance, inductance, capacitance, and coupled inductance.
Lemma 2. [31] The driving point impedance Z(s) or
admittance Y(s) of a passive electrical network is PR.
Definition 7. [6] Lossy inductor having impedance L(s+¢)

is inductor L in series with resistor Le .
Definition 8. [6] Lossy capacitor having impedance
1/C(s +¢) is capacitor C in parallel with resistor (Ce)™ .

A lossy passive electrical network is a passive network
which is made up of positive elements including resistance,
lossy inductance, and lossy capacitance.

Lemma 3. [6]: The driving point impedance Z(s) or
admittance Y(s) of a lossy passive electrical network is SPR.
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Fig. 4 Ladder Electrical Network Structure

Fig. 4 shows the structure of the ladder network that has the
following impedance

Z (s) =12 +

in

— 3)
Y t————
1

Z,+
Y 4

In the following Lemma a sufficient condition for PR and
SPR transfer function is presented. This Lemma can be very
useful in some cases.

Lemma 4. [34] If the transfer function G(s) can be realized as

a passive (lossy passive) ladder electrical network then it is PR
(SPR).

E le 7. [34] Let G(s) s 42542 It i i
S) = —FV—_—"_.
xample 7. [34] Let 13543 t is easy to verify
that
5 +25+2 1
C8) = Fiasta 1
1+71
sH)H—
(++1) s+1]

Hence G(s)is SPR, because it is realized as a lossy passive

electrical network.

E le 8. Let G(s) s Iti ify th
i\S) = —5—.
xample 8. Let S tstl t is easy to verify that
1 1
Glo) = =
§ +s+ o
s+1

We cannot obtain any results about SPRness of G(s) based on

Lemma 4, however, it can be concluded that G(s) is PR.

V.HIGH FREQUENCY BEHAVIOR OF Re(G(jw))

In this section, we review high frequency behavior of
Re(G(jw)) for PR, WSPR, and SPR real rational transfer
functions. A discussion on this topic is presented in [24], [28],
[32]. In the next, a review and completion of these references
is presented. Consider

S’l71+b13’172+...+b71728+b

n—1

Gs)=d+csl —A) ' b=d+k
) =d bl — A b=d bk T @)
is analytic in |S| > p, then we have
. 7 A
Re(G(jw)) =1, + —5 + —¢ +oo) lof > p (5)

where 7,=d, and n,=—cAb=k(a,~b,).

Based on (5) the behavior of Re(G(jw)) for biproper PR,

WSPR, and SPR transfer functions is similar, because for
sufficiently high frequencies we have

If d > 0= Re(G(jw)) = 1, = d, for|e| > p  (6)

In spite of biproper transfer functions, we show that the
behavior of Re(G(jw))for strictly proper SPR transfer

functions is different from the others. If G(s) is strictly proper,

then Definition 5 implies that: G(s)is SPR if and only if it is

WSPR, and in addition the following inequality for
sufficiently small >0 is satisfied [27].

lim __ Re(G(jw —€)) >0 (7

w—c

In the past half century, many researches have been devoted
to extract a simple equivalent relation for inequality presented
in (7). The first valuable work to simplify this inequality is
presented in [6] where argues that: If G(s)is strictly proper

SPR transfer function, then Re(G(jw)) cannot decay more
rapidly than w™ as w—o0; i.e.,

lim  w’ Re(G(jw)) > 0 ®)

W—00

On the other hand, (5) for strictly proper SPR transfer
function G(s) presented in (4) implies that

lim, '’ Re(G(jw))=—cAb=Fk(a,—b,) ©9)

Lemma 5. [24], [28] If G(s)in (4) is strictly proper PR or
WSPR, then —cAb>0 or (a,—b,)>0.

Lemma 6. [24], [28] If G(s) in (4) is strictly proper SPR, then
—cAb > 0 or (a,—b,)>0.

Lemma 7. There is not any restriction on decay ratio of real
part of PR and WSPR transfer functions in high frequencies.
Proof: Let

1
 s4G(s)

H(s) (10)
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where G(s) is strictly proper rational transfer function and it is

not an odd function of complex variable s. we show that when
w—00 the following relation is satisfied

Re(H(jw)) ~ w Re(G(jw)) (11)

In addition, if G(s)is PR (WSPR), then H(s)in (10) is PR
(WSPR). Note that if G(s)is SPR, then H(s)in (10) is not
SPR because according to (11) the inequality (8) is
contradicted for H(s). It is easy to verify that

. o)
R0 = i@y @ 2

where 7(w) and i(w) are real and imaginary part of G(jw)
respectively. Since G(s)is strictly proper rational transfer
function for sufficiently large w we have 7(w)—0, i(w)—0
and wi(w)—l, [eR. Subsequently, (12) reduce to (11).
Therefore, we construct a new strictly proper PR (WSPR)

transfer function H(s) such that the decay ratio of its real part

in high frequencies is equal to w . Furthermore, if

T(s) = (s + H(s))", then the decay ratio of real part of

T(jw) in high frequencies is equal to w " and so on.
Example 9. Let

2s+1 s+1
G(s)=———, G(s) = ——
() s +s+1 .(8) s 4s+1
2 1 3 2 2 1
)= o G = e
: §'+8 +2s+1 § 48" +3s +2s+1

Note that based on Corollary 4 Gi(s) is SPR and G,(s)is
WSPR. Also, note that

1 1 1

G,(s) = G0 = e G0 = Tam

Therefore, it can be concluded that G,(s) and G,(s) are
WSPR and in addition for sufficiently large w we have

Re(G, (jw)) =~ w

Re(G,(jw)) =~ w '

Re(C, (1) = )
Re(G,(jw)) ~ w

This fact is depicted in Fig. 5. It is clear that the decay ratio
of Re(G (jw)) is w™*.
In the following a simple numerical method for checking

high frequency condition of PR (WSPR) and SPR transfer
functions is presented. Let

Re(G(jw))

" Re(@Gz)) 7 0

Now, considering (5) we have

Ifr =0 =a=1
Ifr, =0,andr, = 0; = a =4

If r,=r,=0, and r,=0; = a~16

Ifr =...=rm

i
0 2i-1) O,and 7, = 0; = a = 4

Corollary 7. High frequency behavior of PR, WSPR and SPR
biproper transfer functions are the same and for all of them
« approaches to 1.

Corollary 8. High frequency behavior of PR, WSPR, and SPR
strictly proper transfer functions are different such that for
SPR ones « approaches to 4, whereas for PR and WSPR ones

a approaches to4', i =1,2,....

Corollary 9. Consider G(s) in (4) with d =0 is strictly

proper WSPR transfer function, then the following statements
are equivalent

1) G(s) is SPR
2) Re(G(jw)) cannot decay more rapidly than w™ as
w—00 or equivalently lim W’ Re(G(jw)) = 0.

3) a,=b, or cAb=0.

n—1 n

4) ; z, = Z:l p, where z,is a zero and p, is a pole of G(s)
5) The parameter o defined in (14) approaches to 4.

10°

10710

107 - [Re (G1(jw))
——Re(G2(jW))
1071 | ——Re(G3(jw)) s

—6—Re (G4(jw))

10715
10* 10%
Frequency (rad/sec)

Fig. 5 Real part of transfer functions in Example 9
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Considering w,=50in (14) and transfer functions cited in

example 9 we have

If G(s) = G,(s) = a = 4.0024
If G(s) = G,(s) = a = 16.0012
If G(s) = G,(s) = a = 64.0144
If G(s) = G, (s) = o = 255.8058

where they confirm the relations presented in (13).

VI. PR LEMMA AND KYP LEMMA

The following Lemmas are called Positive Real Lemma,
(i.e., PR Lemma) and KYP Lemma respectively.

Lemma 8. [12] The real rational transfer function G(s) with
minimal realization G(s)=d+c(sI—A)™'b is PR if and only if

there exists matrix P=P" >0 and vector ¢ such that
PA+A"P=—¢"q (15)
Pb=c"—2dq" (16)

Lemma 9. [12] The real rational transfer function G(s) with
minimal realization G(s)=d+c(sI—A)'b is SPR if and only if

there exists matrix P=P" >0, vector ¢, and a positive constant
€ such that

PA+A"P=—¢"q—<P a7
Pb=c — @q’r (18)

Note that (16) and (18) implicitly argue thatd>0. In
addition, for =0 these Lemmas are simplified as follows

PR Lemma: PA+ A'P =—-Q <0, Pb=c"
KYP Lemma: PA + A'P = —Q <0, Pb= ¢

VII. CONCLUSION

In this paper definitions, properties, lemmas and theorems
appeared in the literature for PR, WSPR and SPR transfer
functions are reviewed. Geometric interpretations are
presented for basic definitions; also the equivalent electrical
networks of PR and SPR transfer functions are explained.
Moreover, an important difference between WSPR and SPR
transfer functions which is imposed by high frequencies is
illustrated with some virgin examples.
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