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Impulsive Noise-Resilient Subband Adaptive Filter

Young-Seok Choi

Abstract—We present a new subband adaptive filter (R-SAF)
which is robust against impulsive noise in system identification. To
address the vulnerability of adaptive filters based on the Ls-norm
optimization criterion against impulsive noise, the R-SAF comes from
the Li-norm optimization criterion with a constraint on the energy
of the weight update. Minimizing L;-norm of the a posteriori error
in each subband with a constraint on minimum disturbance gives
rise to the robustness against the impulsive noise and the capable
convergence performance. Experimental results clearly demonstrate
that the proposed R-SAF outperforms the classical adaptive filtering
algorithms when impulsive noise as well as background noise exist.
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I. INTRODUCTION

DAPTIVE filtering has been of considerable interest
among various signal processing fields such as channel
equalization, system identification, acoustic echo cancellation,
and so on. Among a number of adaptive filtering algorithms,
the normalized least square (NLMS) algorithm has been
preferred due to its simplicity of implementation [1][2].
However, the NLMS suffers from the degradation of
convergence in case of a correlated input signal. To overcome
this limitation, adaptive filtering in the subband has been
recently developed, referred to as the subband adaptive
filters (SAFs) [3]-|5]. The remarkable fecature of the SAF
is that it allocates an input signal and a desired response
into almost mutually exclusive subbands. By carrying out a
pre-whitening on the correlated input signal, the SAF achieves
the improved convergence rate over the fullband based
LMS-type filters. Recently, through a multiple-constraints
optimization problem based on the principle of minimal
disturbance, the normalized SAF (NSAF) has been developed
with the superior convergence rate over the NLMS, while it
has nearly same computational burden with the NLMS.
Consider that impulsive noise is existent under a
system identification scenario such as echo cancellation.
Since impulsive noise with non-Gaussian distribution leads
to more perturbation rather than Gaussian noise, the
convergence behavior of an adaptive filter based on Ls-norm
optimization is heavily impaired. To address this issue, several
adaptive filtering algorithms which utilize lower order norms
have been developed [6]-[8]. Among them, the L;-norm
optimization yields the robustness as well as the simplicity of
implementation [7][8]. However, the poor convergence of the
adaptive filters based on the L;-norm optimization in the case
of correlated input signals remains as a major drawback. More
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Fig. 1 Subband structure with the analysis filter and synthesis filter and the
subband desired signals, subband filter outputs, and subband error signals

recently, an affine projection algorithm based on a L;-norm
optimization has been introduced [9].

Here, to tackle the robustness and convergence behavior
issues in subband framework, a new robust SAF (R-SAF)
which comes from the L;-norm optimization criterion is
presented. Formulating the L;-norm of the a posteriori error
in each subband with a constraint of the energy of the
weight update as the cost function and minimizing this cost
function, it results in the robust and capable update recursion
of the R-SAF. This letter deals with the robustness issue
against impulsive interference with non-Gaussian distribution.
Furthermore, the novelty of this work lies in the improved
convergence compared to conventional Lj-norm based
adaptive filters. Through various simulations, the resulting
R-SAF has proven its superior robustness and convergence
performance over the classical NLMS and the normalized sign
algorithm (NSA) [7] in cases when impulsive noise exists.

II. RoBUST SAF (R-SAF)

Consider a desired signal d(n) that arise from the system
identification model

d(n) = u(n)w® + v(n), ()

where w° is a column vector for the impulse response of an
unknown system that we wish to estimate, v(n) accounts for
measurement noise with zero mean and variance o2 and u(n)
denotes the 1 x M input vector,

u(n) =[u(n) u(n—1) ---u(n — M +1)]. 2
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A. Structure of SAF

Fig. 1 shows the structure of the well known NSAF,
where the desired signal d(n) and output signal y(n)
are partitioned into N subbands by the analysis filters
Hy(z),H1(2),...,Hy—1(z). The resulting subband signals,
d;(n) and y;(n) for ¢ = 0,1,...,N — 1, are critically
decimated to a lower sampling rate commensurate with
their bandwidth. Here, the variable n to index the original
sequences, and k to index the decimated sequences are used
for all signals. Then, the decimated filter output signal at cach
subband is defined as y;(k) = u;(k)w(k), where u;(k) is
1 x M row vector such that

uz(k) = [UZ(kN),UZ(kN — 1), N ,Ui(kN - M + 1)}
and w(k) = [wo(k),wi(k),...,wr—1(k)]T denotes an
estimate for w° with length M. Then, the a priori and a
posteriori errors at each subband {eq ;(k), ep,i(k)} are defined
by

€ai(k) = di(k) —ui(k)w(k), 3)
and
ep,i(k) = di(k) —uw;(k)w(k + 1), 4

where d;(k) = d;(kN) is the decimated desired signal at each
subband for ¢ = 0,1,...,N — 1. Then, the a priori and a
posteriori error vectors {e,(k),e,(k)} can be formulated as

€a,ogk§ ep,ogk‘g

€a,1 k €p,1 k

ea(k) = . 5 ep(k) = :
ea,N—l(k) ep,N—l(k)

B. Derivation of the R-SAF

Here, the proposed optimization criterion is formulated as
follows: Minimizing the L;-norm of the a posteriori error
vector

5

i flep (k) ®)

subject to a constraint on the energy of the filter update, which
is given by

Iw(k+1) = w(k)]3 < u?, 6)
where ©? denotes a control parameter which prevents the
weight update from the abrupt change. The constraint (6) plays
a role in restricting the effect of the perturbation, which is
based on the principle of minimum disturbance. In this regard,
the parameter, u, needs to be small. Then, the constrained
optimization criterion with the Lagrange multiplier is given
by as follows:

J(k) = lep(B) L + Allw(k + 1) = w(k)|3 — p?], ()

where )\ is a Lagrange multiplier. Note that the L;-norm is a
non-differentiable convex function, the gradient does not exist
at any point. To deal with this situation, a subgradient method

[10] is incorporated. Taking the gradient of (7) with respect

to the weight vector w(k + 1), it leads to

Ve (k) = Vo) lep ()11 + 2Aw (k + 1) — w(k)]"
= [Ve, (k)] "sgn(e, (k) + 2A[w(k + 1) — w(k)]"

N-1
= Z sgnlep,i (k)]
i=0

w; (k) + 2\ [w(k + 1) — w(k)]”,

®)

where va( k+1) f(+) denotes a subgradient vector of a function
f () with respect to w(k + 1) and sgn(-) represents the signum
function. Setting (8) equal to zero, the following is obtained

1N—l
wk+1)= (1<:)+ﬁ u/ (k)sgnleyi (k). (9)
=0

Substituting (9) into the constraint (6), it results in

I

DS gl sWlua(h) - S ol (R)sgalepa(h)]

(10)
Assuming that the a priori error e, ;(k) approximates the
a posteriori error e, ;(k) and substituting (10) into (9), the
proposed R-SAF updates the weight as follows:
w(k+1) =w(k)+
3o uf (k)sgnleq,s(k)]
N-1
T sl (k) - T o (k)sgmlen )]
(11

where p plays a role in controlling the convergence as a
step-size parameter.

’

IT1I. EXPERIMENTAL RESULTS

To validate the performance of the proposed R-SAF,
computer simulations are carricd out in a system identification
scenario in which the unknown channel is randomly generated.
The length of the unknown system is M/ = 128 in experiments.
The adaptive filter and the unknown system are assumed to
have the same number of taps. The input signals u(n) are
obtained by filtering a white, zero-mean, Gaussian random
sequence through a first-order system G(z) = 1/(1 —
0.9271). The measurement noise v(n) with white Gaussian
distribution is added to the system output y(n) such that
the signal-to-noise ratio (SNR) is 30 dB, where the SNR
is defined as SNR = 10log;,(E[y%(1)]/E[v?(i)]), where
y(n) = u(n)we. Impulsive noise z(n) is added to the system
output y(n) with the signal-to-interference ratio (SIR) of
-30, -10, and 10 dB. This impulsive noise is modeled by a
Bernoulli-Gaussian (BG) distribution [11], which is obtained
as the product of a Bernoulli distribution and a Gaussian one,
ie, z(n) = w(n)n(n), where w(n) is a Bernoulli process
with a probability mass function given by P(w) = 1 — p for
w=0and Plw)=p for w = 1. The average power of the
BG distribution is p - 0,7 When keeping the average power
constant, the smaller p value, the spikier the BG interference.
Here, p = 0.001 is used in the simulations except Fig. 7 where
various p values are considered. In addition, 7)(n) is additive
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Fig. 2 Normalized MSD curves of the R-SAF with the different number of
subbands, N =1, 2, 4, 8, and 16. The interference is the BG process with
SIR=-30 dB
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Fig. 3 Normalized MSD curves of the R-SAF with the different step-sizes,
p = 0.1, 0.03, 0.01, 0.003, and 0.001. The interference is a BG process
with SIR=-30 dB

white Gaussian noise with zero mean and variance af]. In
order to compare the convergence performance, the normalized

mean square deviation (MSD),

o 2
Normalized MSD = E (M> ,
[[we[?
is taken and averaged over 50 independent trials. The
cosine-modulated filter banks [5] with the subband numbers
of N =1, 2, 4, 8, and 16 are used in the simulations. The
prototype filter of length L = 32 is used.

Fig. 2 shows the normalized MSD curves of the R-SAF in
cases of the different number of subbands, i.e., N=1, 2, 4, 8,
and 16. The step-size, 1 = 0.01, SIR=-30 dB, and p = 0.001
are used. In the figure, the higher the number of subbands, the
better the convergence behavior of the R-SAF in terms of the
convergence rate and the steady-state misalignment.

Fig. 3 depicts the convergence performance of the R-SAF
with various step-sizes for N = 4, where p = 0.1, 0.03,
0.01, 0.003, and 0.001 are chosen. The same values of
SIR and p as those in Fig. 2 are chosen. As expected, the
use of a large step-size leads to faster convergence with
higher steady-state misalignment. On the contrary, a small
step-size reduces the convergence rate, but achieves the lower
steady-state misalignment.
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Fig. 4 Normalized MSD curves of the NLMS, NSA, NSAF, and R-SAF
under SIR=-30 dB
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Fig. 5 Normalized MSD curves of the NLMS, NSA, NSAF, and R-SAF
under SIR=-10 dB

Figs. 4-6 illustrate the normalized MSD curves of the
NLMS, NSA, NSAF, and R-SAF in cases of SIR=-30, -10,
and 10 dB, respectively. The number of subbands, N=4, for
the NSAF and R-SAF is chosen in these simulations. The
step-sizes, 4 = 0.1 for the NSA and p = 0.003 for the R-SAF
are used. While the NLMS and the NSAF are vulnerable
against impulsive noise, the NSA and the R-SAF are capable
of coping with the BG interference. Moreover, the convergence
behavior of the R-SAF is superior to that of the NSA.
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Fig. 6 Normalized MSD curves of the NLMS, NSA, NSAF, and R-SAF
under SIR=10 dB
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Fig. 7 Normalized MSD curves of the NSA and R-SAF under different p
values, p = 0.1, 0.01, and 0.001.
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Fig. 8 Normalized MSD curves of the NLMS, NSA, NSAF, and R-SAF in
case of a time-varying unknown system. The system is suddenly changed
from w° to —w® at the 10000th iteration

To examine the effect of the impulsiveness of the BG
interference, the convergence performances of the NSA and
the R-SAF with N = 4 are compared, where p = 0.1, 0.01,
and 0.001 are considered. The step-sizes are same as those in
Figs. 4-6. The SIR is set to -10 dB. It can be seen that the
NSA and the R-SAF perform better in cases when the BG
interference is more spiky. In addition, the R-SAF achieves
highly improved convergence performance over the NSA for
all cases.

Finally, the tracking capabilities of the NLMS, NSA, NSAF,
and R-SAF to a sudden change in the system are tested. For the
SAFs, the number of subbands, N = 4, is used. Fig. 8 shows
the results of suddenly multiplying the unknown system by —1
at the 10000th iteration. Same values of the step-size in Fig. 4
are used for algorithms. As can be shown, the R-SAF keeps
track of weight change without losing the convergence rate
nor the steady-state misalignment compared to conventional
algorithms.

IV. CONCLUSION

A robust SAF which stems from a L;-norm optimization
criterion based on subband structure has been dealt with on
both robustness and convergence. The resulting R-SAF inherits
robustness by utilizing a L;-norm optimization as well as the
capable convergence due to subband framework. A number of

numerical simulations have shown that the R-SAF successfully
addresses both vulnerability against impulsive interference and
poor convergence of the sign algorithm.
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