International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

The Effect of Program Type on Mutation Testing:
Comparative Study

B. Falah, N. E. Abakouy

Abstract—Due to its high computational cost, mutation testing has
been neglected by researchers. Recently, many cost and mutants’
reduction techniques have been developed, improved, and
experimented, but few of them has relied the possibility of reducing
the cost of mutation testing on the program type of the application
under test. This paper is a comparative study between four operators’
selection techniques (mutants sampling, class level operators, method
level operators, and all operators’ selection) based on the program code
type of each application under test. It aims at finding an alternative
approach to reveal the effect of code type on mutation testing score.
The result of our experiment shows that the program code type can
affect the mutation score and that the programs using polymorphism
are best suited to be tested with mutation testing.

Keywords—Equivalent mutant, killed mutant, mutation score,
mutation testing, program code type.

[. INTRODUCTION

OFTWARE testing is the process of determining if a

program behaves as expected. It is an intellectually
challenging activity aimed at evaluating the ability of a program
or system and determining whether or not it meets its
requirements [1].

With increased expectations for software component quality,
software developers are expected to perform effective and
efficient testing. In today’s scenario, mutation testing has been
used as a fault injection technique to measure test adequacy. It
is done by seeding artificial faults into the implementation
(original source code) and checking whether the test suite is
able to find the errors.

Mutation testing is a powerful fault-based testing technique
used to ensure software quality and evaluate the effectiveness
of'test cases [1]-[3]. It is based on the assumption that a program
will be well tested if all simple faults are detected and removed.

Early studies suggest that testing can comprise up to 50% of
the software development budget [4], and a recent survey
revealed that billions of dollars are routinely wasted on large
software projects due to inadequate testing [5].

Mutation testing is a structural testing method that is meant
to approximate faults in the program being tested, while
improving the test cases and test suites. The main goal of
mutation testing is to evaluate and develop the test cases and
test suites by injecting faults in the original code. There are
mainly three types of mutation testing:

1) Value mutations: involves changing the values of constants
or parameters;

Bouchaib Falah, Nour El Houda Abakouy are with the Al Akhawayn
University, Ifrane, Morocco (phone: 212-535862194; fax: 212-53862030; e-
mail: B.falah@aui.ma, n.abakouy@aui.ma).

2) Decision mutations: involves modifying conditions to
detect potential slips and errors in the coding of conditions
in programs;

3) Statement mutations: might involve deleting certain lines
to detect omissions in coding or swapping the order of lines
of code.

Although powerful, mutation is computationally a very
expensive testing technique. In fact, its three main stages
(mutant generation, mutant execution and result analysis)
require many resources to be successfully accomplished [6].
The high cost of mutation testing is due to high computational
cost of executing the huge number of mutants against a test set,
more there is the human oracle problem which refers to the
process of checking the original program’s output with each test
case [7].

While taking into consideration the program code type, this
paper is a comparative study between four operators’ selection
techniques: (1) mutant sampling, which is a simple approach
that randomly chooses a small subset of mutants from the entire
set; (2) class level operators; (3) method level operators; and (4)
all operators’ selection.

II. RELATED WORK

To reduce the cost, many mutation strategies have been
developed and adopted. These strategies have been done mainly
in two directions which are addressing the common problems
of mutation testing in order to reduce cost and time spent to
execute mutants, or in doing comparative studies between the
different techniques of mutation testing. However, the
relationship between the program type and the cost of mutation
testing has been ignored.

P. R. Mateo and M. P. Usaola [8] proposed a technique that
improves existing mutation cost reduction technique. This
technique gives the ability to identify situations where a mutant
must not be executed, therefore reducing the number of total
required executions in a mutation analysis. The experiment
shows that the execution order of the tests has an influence on
the number of executions, and therefore the execution order
influences the efficiency of MUSIC.

B. H. Smith and L. Williams [9] tried to answer the following
question: should software testers use mutation analysis to
augment a test set? They showed that the choice of mutation
tool and operator set can play an important role in determining
how efficient mutation analysis is, for producing new test cases.

196

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

References [10], [11] suggested that 10% was the optimal
percentage of mutants to be selected from the set of mutants
generated; executing 10% of mutants is only 16% less effective
than testing the entire set of mutants in mutation score.

Other studies focused on different approaches to determine
the optimal subset of mutants. Sahinoglu and Spafford [12]
suggested a sampling approach that proposed to calculate the
ratio of the mutant based on the Bayesian sequential probability
ratio test. This new approach suggested that the subset of the
mutants to be tested is randomly selected until a statistically
appropriate sample size is reached.

III. MUTATION TESTING BUILDING BLOCS

Using mutation is very important in evaluating, comparing,
and improving the quality of a test suite. However, the value of
mutation testing depends on the set of mutants used in the
evaluation. These mutants are formed from the original
program through the use of predefined mutation operators.

Since mutation is always based on mutation operators,
researchers have designed and developed mutation operators to
support various programming languages including Java. The
quality of mutation operators is the key to mutation testing. One
mutation testing used with Java code is Mulava [13], [14].
Mulava includes two general types of mutation operators: class
level operators [15] and method level operators [13], [16].

The efficiency of mutation testing relies heavily on mutation
operators used. A mutation operator consists of a set of
“predefined program transformation rules” used to substitute a
section of the program in order to introduce faults in the source
code [17]. So their main role is to produce different version of
the original program. These versions are called mutants. A
mutant is created by applying mutation operator on the original
source code. Fig. 1 illustrates the creation process of mutants.

Original

Fig. 1 Mutants Creation Process

A. Method Level Operators

The method level operators, also called traditional operators,
handle the primitive features of programming languages. They
modify a subsection of an original program by replacing,
deleting or inserting primitive operators (arithmetic operator,
relational operator, conditional operator, shift operator, logical
operator, and assignment) [18].

Those operators were influenced by the procedural language
that dominated software engineering at its early stages.

MulJava provides 6 types of method operators [1]:

1. Arithmetic operator,
2. Relational operator,
3. Conditional operator,
4. Shift operator,

5. Logical operator,

6. Assignment.

According to the number and type of operands, some of the
method level operators are divided into two or three operators.
Table I describes the method operators defined by [18] for Java
language.

TABLEI
METHOD-LEVEL MUTATION OPERATORS [18]
Operator Operator Description
AOR Arithmetic Operator Replacement
Arithmetic AOI Arithmetic Operator Insertion
AOD Arithmetic Operator Deletion
Relational ROR Relational Operator Replacement
COR Conditional Operator Replacement
Conditional COlI Conditional Operator Insertion
COD Conditional Operator Deletion
Shift SOR Shift Operator Replacement
LOR Logical Operator Replacement
Logical LOI Logical Operator Insertion

LOD Logical Operator Deletion

Assignment ASR Assignment Operator Replacement

B. Class Level Operators

Object Oriented Programming brought many functionalities
and properties like polymorphism, encapsulation and
inheritance. As a result of those new properties, new bugs and
faults were revealed in the programs that traditional operators
were unable to detect. Thus, class-level operators were
introduced in the late 90’s to be used with those object-oriented
programs.

The class mutation operators are classified into four groups:
e Encapsulation,

e Inheritance,
e Polymorphism,
e Java-Specific Features.

These four groups are based on the language features that are
affected [19]. The first three categories depend on programming
language features that are common in all OO programming
languages. The fourth category depends solely on Java.

Table II lists the current set of class mutation operators of
MulJava as well as their descriptions.

IV. EXPERIMENT

To conduct our experiment, we have used four java open
source code applications of different lengths and complexity,
which are downloaded from the internet. These applications are
automatically injected by faults using an Eclipse Plug-in,
MuClipse [20]. MuClipse is a popular automatic mutation
testing tool that provides a bridge between the existing MuJava
mutation engine and the Eclipse IDE.

197

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

TABLE I
CLASS-LEVEL MUTATION OPERATORS [18]

Language Feature Operator Description

Encapsulation AMC
[HI Hiding variable insertion
HD Hiding variable deletion
10D Overriding method deletion

Access modifier change

. 10P Overriding method calling position
Inheritance .
IOR Overriding method rename
ISI Super keyword insertion
ISD Super keyword deletion
IPC Explicit call of a parent's constructor

PNC new method call with child class type
Member variable declaration with parent

PMD
class type
Parameter variable declaration with child
PPD
class type
PCI Type cast operator insertion
PCD Type cast operator deletion

Polymorphism
pPCC Cast type change

Reference assignment with other
PRV .
comparable variable
OMR Overloading method contents replace
OMD Overloading method deletion
OAC Arguments of overloading method call

change
JTI This keyword insertion
JTD This keyword deletion
JSI Static modifier insertion
JSD Static modifier deletion
JID Member variable initialization deletion
Java-Specific Features JDC ‘clf;el-i(s)llxqpponed default constructor

Reference assignment and content
assignment replacement
Reference comparison and content
comparison replacement

EAM Accessor method change

EMM Modifier method change

EOA

EOC

The combined class level and method level mutation
operators, including their subdivisions, that are currently used
in MuJava are illustrated in Fig. 2.

These four programs are, then, analyzed by computing the
score of each program for each of the four selection testing
techniques, All operators, Class level, Method level, and
Mutation sampling.

A. Programs under Test

1. Cruise Control Program

e An open source program with pre-built mutants.

e Composed of eight classes.

e The cruise control system simulates a car engine and its
cruising controller

e Type of code: a logical code that uses polymorphism.

2. Elevator Program

e An open source program with pre-built mutants.
e Composed of eight classes.

e The Elevator system consists of a number of elevators
servicing a number of floors.
e Type of code: a logical code that uses inheritance.

3. Black Jack

e Composed of eight classes program.
e Logical program that uses some computational assignment.
e Type of code: a logical code that uses polymorphism.

4. Calculator

e A basic program that contains standard operations.
e No inheritance, polymorphism or special features are used.
e This program was an in-class practice for JUnit.

B. Mutation Testing Tool Used

The creation and the execution of mutants are long and
resource consuming tasks. Several researchers have worked on
developing mutation software that automates the process. As
part of our research, we have used MuClipse, which adopts
architecture similar to the architecture adopted by MulJava that
uses “Mutant Schemata Generation” (MSG) approach [20].

MuClipse provides functionality to easily create mutants as
well as to run unit tests against those mutants, in order to
generate a mutation score that will indicates the quality of those
test cases used. A mutation score is the percentage of all the
generated mutants that have been killed divided by the total
number of all the mutants created in the first runtime
configuration. If the mutation score is low then test cases should
be improved, in order to kill more mutants.

C. Metric Used

The metric used in this research project is the standard
scoring metric for mutation testing, which is defined as:
Mutation Score = 100 * D/ (N - E), where
e D = Dead mutants that were killed by testing them against

the test cases.

e N = Number of total generated mutants depending on the
operator selection method used.

e E = Number of equivalent mutants. Equivalent mutants are
kind of program mutations that leave the program’s overall
semantics unchanged, and therefore cannot be caught by
any test suite [21].

This score allows us to have an idea about the quality of test
cases tested against the generated mutants. The higher the score
will be, the better the test cases are.

D.Our Approach

The aim of our approach is to do a comparative study
between the four operators’ selection techniques, mutant
sampling, class level operators, method level operators and all
operators’ selection, while taking into consideration the
program code type.

On the mutant sampling technique, 15 operators were
randomly selected from both class-level and method-level
operators. These operators are: AOR, AOI, AOD, ROR, COR,
COl, IHI, IHD, IOD, IOP, IOR, ISI, ISD, IPC, and PNC.

198

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

= Run Configurations

Create. manage. and run configurations

type filter text
Ju TwoStageTest -
Ju TwoStageThread Test
", MuClipse: Mutants
=, Mew_configuration

E;

m

2% Mew_configuration (10}
222 Mew_configuration (11}
222 Mew_configuration (16)
222 Mew_configuration (18)
222 Mew_configuration (2)
222 Mew_configuration (20) |
222 New_configuration (5)

222 Mew_configuration (8) -

SR X B - Mame: New_configuration (12)
£+ Directories | [J] Operators
Class-Level Operators
Traditional Operators [&F] THT
[#] AORB [] AORS [F1op [FIOR [F]ISI
[Aol [¥]AOCIS [Fl1sp [FIPC [F]PNC

s, Mew_configuration (1) o S —
s, Mew_configuration (12} [#] aoDU [#] AODS [l PpmD [F1PPD [#F] PCI __
“u, Mew_configuration (24) [F1ROR [¥] COR [FlPpcC [FIPCD [&F]PRV Mo Traditional
“a, Mew_configuration (3) Fcob [#FCcol [#] OMR [¥] OMD [¥] OAN All Class-lewvel
:. Mew_configuration (4] SOR LOR =] 11 & JTD [ISt e
Ny EEW*CO"?Q"”E:'C‘” g; Lol LOD Flisp [Fap [#FIDC
. Mew_configuration
W W i v
“u, Mew_configuration (9) e EQA EOC EAMM
322 MuClipse: Tests EMM

“%; Classpath | =i JRE| %> Source| B Environment | ™1

[1HD [10D

e —T——
Filter matched 35 of 35 items [—rEre— ————
@) [Run] [Close]
Fig. 2 MuJava Mutation Operators
E. Results and Analysis TABLE TV
. . ELEVATOR PROGRAM RESULTS
Tables III-VI provide results generated from running .

. ; Selection Method Total Alive Dead S %
mutation testing for every program under test. On each test, clection Method 1 utants mutants mutants core 7o
different operators’ selection techniques were chosen. For that All Operators 404 261 149 36,9%
reason, on each operator selection technique, we generate a new Class Level 95 37 58 61%
result file of mutants separately. Moreover, for every operator Method Level 342 251 91 27%
selection method, the test was run for every class from the Mutant Sampling 459 427 32 6.9%
program and score values were calculated. 3. Black Jack

1. Cruise Control TABLEV
BLACK JACK PROGRAM RESULTS
TABLE IIT Selection Method T(;talt Altlvet Dfadt Score %
CRUISE CONTROL PROGRAM RESULTS mutants mutants mutants
Total ALy Dead All Operators 202 23 179 88.6%
Selection Method mu(zai s mu tanets muf:n ts Score % Class Level 25 0 25 100%
S Method Level 177 27 150 84.7%
All Operators 206 0 206 100% Mutant Sampling 67 17 50 74.7%
Class Level 40 0 40 100%
Method Level 40 0 40 100% . .
Mutant Sampling 251 206 45 18% The Black Jack program testing scores were pretty high, even

Cruise Control program testing score was a full score for the
first operators’ selection techniques, while it was very low for
the mutant sampling which is quite logic since random selection
may result some random operators that may not be good
representatives.

2. Elevator

The elevator program testing score ranges from 7% to 61%;
meaning it varies from low to very low for all operators’
selection technique except for class level method which is quite
decent.

if they are not totally full for the mutant sampling technique,
method level technique, and All Operators technique.

1. Calculator

TABLE VI
CALCULATOR PROGRAM RESULTS
Selection Method Total Alive Dead mutants Score %
mutants mutants
All Operators 45 32 13 71.0%
Class Level NA NA NA NA
Method Level 45 32 13 71.0%
Mutant Sampling 42 26 13 50%

From Table VI, we notice that the class level operators’
selection method was not applicable. This is actually due to the
nature of the program since the features that those operators’
addresses do not exist in the calculator code.

199

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

2. Result Graph

Based on the results of the all programs obtained in our
empirical study, we summarize the mutation testing score of
each of the four programs tested in Fig. 3, which illustrates a
bar graph of scores using the four different proposed
techniques.

100
90
80
70
60
50
40
30
20
10

0

mAll
mCL

ML
B MS

Fig. 3 Mutation Testing Scores Bar Graph

In this bar graph, the x-axis represents the different programs
used, and the y-axis represents the testing score (percentage %)
of the program.

e The blue color, ALL, represents the score using “All
operators” selection technique.

e Thered color, CL, represents the score using “Class-Level”
selection technique.

e The green color, ML, represents the score using “Method-
Level” selection technique.

e And the purple color, MS, represents the score using
“Mutant Sampling” selection technique.

A quick analysis of the graph shows that, using mutant
sampling operator selection method, the mutation score of
CruiseControl and BlackJack applications for all four
techniques are quite higher than the score of the other two
applications except for the Method Sampling technique of the
CruiseControl application. These two applications have logical
codes that use polymorphism. In addition, the Elevator
application whose code uses inheritance has the lowest score
for all four techniques. So we can conclude that the code type
has a big effect on the mutation score and that polymorphism is
the best suited type for the mutation score.

VIII.CONCLUSION AND FUTURE WORK

Nowadays, mutation testing has been used as a fault injection
technique to measure test adequacy. It is done by seeding
artificial faults into the original source code and checking
whether the test suite is able to find the errors.

In this paper, four java open source code applications of
different length and complexity have automatically injected by
faults and, then, analyzed by computing the score of each

program for each of the four selection testing techniques, All
operators, Class level, Method level, and Mutation sampling.

The results of our experiment have proved that reducing
mutants do not necessary mean that the testing score will
decrease. The research has suggested that the choice of the
program code type, especially polymorphism, can have an
impact on the effectiveness of the mutation testing score and
mutant.

This research opens the opportunity to consider other
possible program code types and check if they affect the
mutation score or not. It provides a field for more research on
the future; for example, on the mutant sampling selection
technique other combinations can be used and compared to the
ones used in this paper. Moreover, bigger, diverse and
additional programs can be tested following the same pattern in
order to confirm our idea, or may be come up with new one.

REFERENCES

[1] B. Falah. “An Approach to Regression Test Selection Based on
Complexity Metrics”, Scholar’s Press, ISBN-10: 3639518683, ISBN-13:
978-3639518689, Pages: 136, October 28, 2013.

[2] B. Falah, K. Magel. “Test Case Selection Based on a Spectrum of
Complexity Metrics”. Ph.D. Dissertation. North Dakota State University,
Fargo, ND, USA. Advisor(s) Kenneth Magel. 978-1-124-62588-1.

[3] B. Falah, K. Magel, O. El Ariss. “A Complex Based Regression Test
Selection Strategy”, Computer Science & Engineering: An International
Journal (CSEN), Vol.2, No.5, October 2012.

[4] B. Beizer. Software testing techniques (2nd ed.). ISBN:0-442-20672-0,
Van Nostrand Reinhold Co.,New York, NY, USA, 1990.

[5] R.N. Charette. Why software fails, Spectrum IEEE, Volume 42, Issue 9,
Pages 42-49, September, 2005.

[6] M. Plol, M. Piattini, and I. G. Rogriguez, “Decreasing the Cost of Mutaion
Teting with the Second Order Mutants,” Software Testing, Verification
and Reliability, vol. 19, pp. 111-131, June 2009.

[7] Y. Jia and M. Harman, An analysis and Survey of the Development of
Mutation Testing, IEEE transactions on Software Engineering, Volume
37, Issue 5, pages 649-678, 2011.

[8] P. R. Mateo, M. P. Usaola, Mutant Execution Cost Reduction through
MUSIC (MUtant Schema Improved with extra Code), ICST 'l12
Proceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, pages 664-672.

[9] B.H.Smith, L. Williams. Should Software Testers Use Mutation Analysis
to Augment a Test Set? Journal of Systems and Software, Volume 82
Issue 11, pages 1819-1832, Elsevier Science Inc. New York, NY, USA,
November, 2009.

[10] A.P. Mathur and W. E. Wong, “An Empirical Comparison of Mutation
and Data Flow Based Test Adequacy Criteria,” Purdue University, West
Lafayette, Indiana, Technique Report, 1993.

[11] W. E. Wong, “On Mutation and Data Flow,” PhD Thesis, Purdue
University, West Lafayette, Indiana, 1993.

[12] M. Sahinoglu and E. H. Spafford, “A Bayes Sequential Statistical
Procedure for Approving Software Products,” in Proceedings of the IFIP
Conference on Approving Software Products (ASP’90). Garmisch
Partenkirchen, Germany: Elsevier Science, pp. 43-56, September 1990.

[13] Y-S. Ma, J. Offutt, and Y. R. Kwon, MuJava: An Automated Class
Mutation System, Journal of Software Testing, Verification and
Reliability, 2005, pages. 97 - 133.

[14] A.J. Offutt, Y. S. Ma, and Y. R. Kwon, “An Experimental Mutation
System for Java,” ACM SIGSOFT Software Engineering Notes
(SECTION: Workshop on empirical research in software testing papers),
29(5), Sep. 2004.

[15] Y. S.Ma, Y. R. Kwon, and J. Offutt, “Inter-Class Mutation Operators for
Java,” In Proc. of ISSRE 2002, pages 352—363, IEEE Computer Society
Press, Nov. 2002.

[16] A. Jefferson Offutt and K. N. King, “A Fortran Language System for
Mutation-Based Software Testing,” Software Practice and Experience,
21(7):686-718, July 1991.

[17] E. S. Mresa, L. Bottaci. (1999). Efficiency of mutation operators and
selective mutation strategies: An empirical study, Journal of Software

200

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:1, 2016

Testing, Verification and Reliability, Volume 9, Issue 4, pages 205—
232, December 1999.

[18] Y-S. Ma and J. Oftut, Description of Method Level Mutation Operators
for Java, December 2005,
http://cs.gmu.edu/~offutt/mujava/mutopsMethod.pdf

[19] Y-S. Ma and J. Offutt, Description of Class Mutation Operators for Java,
December 2005, http://cs.gmu.edu/~offutt/mujava/mutopsClass.pdf

[20] Muclipse: An Open Source Mutation Testing Plug-in for Eclipse, July
2008, http://muclipse.sourceforge.net

[21] Bernhard J. M. Grun, David Schuler, and Andreas Zeller. The Impact of
Equivalent Mutants. Proc. 2nd International Workshop on Multi-Core
Software Engineering (IWMSE), Pages 49-55, May 2009.

Dr. Bouchaib Falah is born in Casablanca, Morocco. He
received his PH.D in Software Engineering from North
Dakota State University, U.S.A, in 2011, a master degree
in Computer Science from Shippensburg University,
Pennsylvania, U.S.A, in 2001, and a bachelor
degree/teaching certificate from Ecole Normale
Superieure, Casablanca, Morocco in 1992.

Offering more than 20 years of combined experience
developing and implementing computer science and technical math curriculum
for different colleges and universities as well as web designer for multimillion-
dollar organizations in USA and researcher in different projects, Dr. Falah is
currently an Assistant Professor at Al Akhawayn University, teaching graduate
and undergraduate software engineering courses, School of Science and
Engineering. Beside teaching high school level math in Morocco and college
mathematics and computer science at Harrisburg Area Community College in
Pennsylvania, Suny Orange Community College in New York, Pennsylvania
State University in Pennsylvania, Central Pennsylvania College in
Pennsylvania, Concordia College in Minnesota, and North Dakota State
University in North Dakota, he has an extensive industrial experience with
Agri-ImaGIS, Synertich, and Commonwealth of Pennsylvania Department of
Environmental Protection. His current research interests include Complexity
Metrics, Security Testing, Agile Methodology and Extreme Programming,
Mutation Testing, Regression Testing, Software Engineering Processes, Web
Application testing, and Design and Architecture. He published a book titled:
An Approach to Regression Test Selection Based on Complexity Metrics,
Scholar’s Press as well as many journal papers on software testing.

In 2014, Dr. Falah became a member of APCBEES and in 2013, he was
awarded certificates from International Association of CS and IT as well as
ARPN journal of systems and software.

201

