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Modeling Bessel Beams and Their Discrete
Superpositions from the Generalized Lorenz-Mie
Theory to Calculate Optical Forces over Spherical
Dielectric Particles
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Abstract—In this work, we propose an algorithm developed
under Python language for the modeling of ordinary scalar Bessel
beams and their discrete superpositions and subsequent calculation of
optical forces exerted over dielectric spherical particles. The
mathematical formalism, based on the generalized Lorenz-Mie
theory, is implemented in Python for its large number of free
mathematical (as SciPy and NumPy), data visualization (Matplotlib
and PyJamas) and multiprocessing libraries. We also propose an
approach, provided by a synchronized Software as Service (SaaS) in
cloud computing, to develop a user interface embedded on a mobile
application, thus providing users with the necessary means to easily
introduce desired unknowns and parameters and see the graphical
outcomes of the simulations right at their mobile devices. Initially
proposed as a free Android-based application, such an App enables
data post-processing in cloud-based architectures and visualization of
results, figures and numerical tables.

Keywords—Bessel Beams and Frozen Waves, Generalized
Lorenz-Mie Theory, Numerical Methods, Optical Forces.

[. INTRODUCTION

PTICAL force control includes outstanding contributions

in areas such as quantum communications and
computing, besides being an important tool in medicine,
particularly in biomedical optics, where optical bistouries and
tweezers are widely employed for applications such as particle
characterization, biophysics study of biological systems,
measurement of stretching of DNA and so on [1], [2]. In this
context, this work initially presents a brief review and
delineate some aspects and properties of particular classes of
non-diffracting optical wave fields [viz., Bessel beams (BBs)
and their discrete equal-frequency superpositions (Frozen
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Waves or FW)] [3]-[6], their modeling and interactions with
dielectric spherical particles, demonstrating how one can
compute optical forces (or, equivalently, radiation pressure
cross sections) exerted on such micro-sized scatterers starting
from the so-called generalized Lorenz-Mie theory (GLMT)
[7]. For arbitrary-sized particles, this modeling requires some
large amount of vector calculus under the numerical complex
data representations which, consequently, may imply on the
adoption of high performance computational approaches.
Additionally, the description of the spatial intensity profile of
the incident arbitrary-shaped beam involves the determination
of beam-shape coefficients (BSCs), whose numerical
calculation can be quite time-consuming (especially when
defined in terms of double or triple integrals over a spherical
coordinate system [7]). Furthermore, there are few toolboxes
made available online (most still constructed using Fortran or
Pascal language) for which the user can readily perform
optical force simulations even from single scalar BBs, which
motivated this work to also present some subroutines
developed in Python and using SciPy library to easily model
those optical wave fields and their discrete equal-frequency
superpositions in order to promptly calculate all the Cartesian
components of the optical forces. This script language was
initially adopted first because of its easily available and fast
development resources, and also due to its wide number of
free online available libraries and documentation. Besides, this
language is hardware and software multiplatform acceptable,
from mobile to server architectures, being possible to execute
it in different operational systems. Because this numerical
solution description and computational approach is interesting
for its data visualization, multi-processing possibilities,
parallel processing and interface design modeling libraries that
are freely available online, we have been conceiving the
development of a full user interface toolbox. Here, we discuss
on our recent advancements for this free Android-based
application, which enables data post-processing in cloud-based
architectures and visualization of results, figures and
numerical tables from mobile devices.

As a study of case, this work presents the simulation of
intensity profiles (field intensity) and longitudinal optical
forces for two commonly adopted FWs which can be of
practical use in optical trapping or tweezers systems: a
constant longitudinal intensity profile (LIP) and a growing
exponential LIP, both valid only within some pre-defined
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spatial longitudinal range.

II. THE GENERALIZED LORENZ-MIE THEORY AND
THEORETICAL DESCRIPTION OF FROZEN WAVES FOR OPTICAL
FORCE CALCULATIONS

Ideal ordinary or zero-order BBs first appeared as solutions
to the scalar wave equation in the form
W(r,z):JO (k,r)exp(—ikzz) [8], [9], w being the operating
frequency, Jo(.) the zero-order Bessel function and k. (k:) the
radial (axial) wave number for a cylindrical coordinate system
(r,0,2), assuming a time convention exp(iax). In general, y(r.z)
is directly related to a particular transverse electric field
component, thus corresponding to a linearly polarized wave
field under the paraxial regime.

Despite being physically unrealizable, ideal BBs are
introduced as a first approximation of truncated BBs generated
from finite apertures. In biomedical optics, they are frequently
incorporated as optical beams for optical trapping and
manipulation of biological particles [10]-[14]. Although they
possess several advantages in terms of resistance to
diffraction, they suffer from a natural inability of realizing
effective three-dimensional (3D) traps. Several traps along
multiple planes can be easily accomplished with single BBs,
but one cannot mechanically displace any trapped particle
along its axis simply because there is always a natural
predominance of repulsive (over attractive) longitudinal
forces. Recently, however, one of the authors theoretically
investigated the possibility of replacing, in optical trapping
systems, single BBs by a new class of non-diffracting beams
called FWs [15]-[17]. These waves are still a solution to the
scalar wave equation, but such a solution is now achieved by
means of a suitable discrete superposition of BBs, all with the
same frequency and order but carrying distinct radial and
transverse wave numbers (paraxiality requirements being
always satisfied). The main characteristic of FWs relies on the
fact that one can design any desired longitudinal intensity
pattern F(z) along some pre-defined distance 0 < z < L (or —
L/2 <z < L/2) thus allowing for the possibility of achieving
effective 3D traps only from z-propagating BBs with the same
order. For example, suppose the above solution y(r,z). For a
z-propagating ideal FW, one has the following superposition
of 2N+ 1 BBs:

Y (r,z,t)=e" ZV 4,7, (qur)e_ik:qz. )
q

=N

In (1), ks and k., represent, respectively, the radial and axial
wave numbers for the ¢-th BB, and A4, are the complex
coefficients of the expansion and intrinsically related to F(z):

_ 2 Lj_Z F( ) i(2m/L) qz (2)

-1/2

Further details and particular examples of LIPs can be
found elsewhere [3]-[5]. We emphasize, however, that in (1)

and (2) only propagating (non-evanescent) BBs are
considered.

In evaluating the optical forces exerted on spherical
particles by FWs one must, as is the common practice for
arbitrary-sized scatterers, first compute the so-called BSCs
which describes the spatial intensity distribution of the
incident beam. In the context of the GLMT, EM fields are
expanded in terms of vector spherical harmonics, the complex
coefficients of such an expansion being those BSCs [7].
Several techniques are available for computing them, from
exact approaches involving triple or double integrations over
the spherical coordinates, quadrature schemes and, finally, the
well-known localized approximations [7], [18]. Here,
however, we consider a more adequate procedure for deriving
the electromagnetic (EM) fields of vector BBs starting from
the vector potential A and imposing, for instance, Lorenz
gauge condition. This procedure (which demands working in
Fourier space) has been recently proposed by Moreira et al.
and furnishes exact solutions to the BSCs for vector BBs with
circular polarization without the need for any integration [19].

Extending the derivations in [19], it is possible to show that,
for an ordinary (zero-order) FW with circular polarization and
displaced (ro,¢,z0) from the origin, the BSCs for TE and TM
modes read as
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with 7 a positive integer, —n < m < n, k = 2n/A and Q" (.)

being the associated Legendre polynomials. After the BSCs
have been found from (3) and (4) and assuming that both the
propagating medium is lossless, the rectangular components of
the radiation pressure cross-section (or, equivalently, the
optical forces) are readily found:
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In (5) and (6), a, and b, are the Mie coefficients dependent
upon the geometric and EM properties of the scatterer and
involving spherical Bessel (or Ricatti-Bessel) functions [7].
Significant computational effort may be required for large
particles, since the number of BSCs and Mie coefficients
required to correctly predict the optical force profiles increases
with their radii. For a spherical particle with radius a, a
simplistic estimative of n can be given by the nearest integer
to the product ka = 2m(a/A) [7]. As an example, for dipole
particles (far from resonances), n = 1. For a = 10A, n = 63.
Therefore, once a given LIP [F(z)] has been chosen, 4, can be
found from (2), which now leads to the determination of all
the BSCs in (3) needed to calculate (5) and (6) once the
geometric and EM (permittivity and permeability) properties
of the particle are known. Numerical calculations now come

into play. Notice, finally, that the procedure just outlined can
be used as a guideline for optical force calculations from
arbitrary-shaped beams, even though, depending on the beam,
one may not avoid going into triple, double or single integrals
in order to find the corresponding BSCs (and, consequently,
also increasing computational effort).

III. COMPUTATIONAL APPROACHES AND SOME NUMERICAL
RESULTS

These numerical modeling and applications are, in most of
the cases, adopted by non-computer scientists or programmer
specialists. Therefore, the user or developer training process
might spend a significant amount of time, depending on the
chosen technological to perform it, trying to get familiar with
them [20]. Furthermore, because of the numerical complexity
level exposed here, per passing by the data visualizations and,
consequently, the computational powerful requirements, the
programming language adopted must include numerical
libraries and computational multiplatform acceptance to
attempt this data processing variety. In view of that, we have
introduced the Python script language as an interesting
alternative for the already developed Fortran source codes for
these Bessel Beam calculations under GLMT equations to
calculate optical forces over scatterers with spherical
symmetry/geometry [15]-[18]. This language presents
sophisticated and wide range of numerical approaches with
efficient data processing [21], [22]. Furthermore, it is easier to
be used in these applications [23] and possesses interesting
data visualization approaches and multiplatform acceptance
[24], [25]. The latter includes the mobile device acceptance,
such as here presented: an initial mobile device interface that
sends data for cloud computing (where the simulations
occurs), from which some numerical data are streamed back in
order to generate graphical information right at the display of
the mobile device. Therefore, this section is organized as
follows: A first subsection briefly comments on the Python
routines necessary to implement the previous Bessel
Equations. Then, a second subsection gives some insights into
the mobile interface under-construction in a Cordova project
developed under the Ionic framework.

A. Python Source Code

The development process was preceded by numerical
studies, where initially the C++, Java and Python languages
were considered in order to successfully develop our
numerical approach.

As already mentioned, Python was chosen mainly because
of its easy of understanding, processing performance and
multiplatform (hardware and software) acceptance. But, apart
from that, an another important and specific detail contributes
to its adoption, viz., its open source license maintained by the
Python Software Foundation (PSF) [26]. In addition, it also
has interesting numerical libraries such as NumPy and SciPy,
and output data graphical visualization with MatPlotLib, for
which details and examples of codes can be freely accessed
online [27]. The source code developed here is also supported
by the open source cross-platform Spyder IDE.
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All main vector equations were developed under reuse,
being specified in Python function, which is easily designed
using the command word spec, as presented in Fig. 1, where
some examples of numerical functions are also presented. For
instance, at line #93 (#108) the real part of the longitudinal
(radial) wave vector is defined, according to the time-
harmonic convention exp(iax).

93 v def betarm(m):

94 #parte real da componente longitudinal do
95 #vetor de onda, k_{zg} comg=m

96 return Qbeta+(2+math.pi#m)/L

97

98 v def betam(m):

99 #componente longitudinal do vetor

180 # de onda, k_{zq} comg=m

181 return betarm{m}-1lj*betaim{m)

182

183 v def kphom(m):

194 fcomponente transversal do vetor de onda,
185 # k_{phoq} com g =m

186 return cmath.sgri((k{indref,w))}+%2 + (betan(m))*#2)
1a7

188 v def kphomr{m}:

189 #parte real da componente transversal do vetor da onda,
118 #k_{phogq} comq =m

111 return numpy.real(kphom(m})

112

113 v def kphomi(m}:

114 #parte imaginadria da componente transversal
115 #do vetor da onda, k_{phogq} com g =m

116 return numpy . imag (kphom(m) )

Fig. 1 Python Source Code Example

In order to allow easier and motivated interfaces, this work
team group is developing a mobile device interface whose
details are given in the next subsection.

B. Mobile Device Interface

Considering the future possibility of freely distributing this
package for interested users, a usable interface is perhaps
mandatory in order to motivate its adoption. Furthermore, the
current software usability techniques are, generally, focused
on the multi-platform acceptance, twofold desktop and mobile
ones [28].

Considering our numerical large scale and complex
application, the current mobile devices are not capable of fully
dealing with it. Therefore, some alternative technological
approaches are necessary to support these back-end
computational demands, the cloud computing being an
interesting model to suppress this large scale computational
requirements, which incurs in some case for high performance
computing solutions that are suitable for the cloud computing
solutions [29].

On the other hand, in the software front-end one can say
that mobile devices are interesting resources to improve the
user interface, with some interactive resources including
touch-screen that can maximize the user interface experience
[30]. In addition, its mobility also improves the mobile and
geographical usage. In this sense, Fig. 2 presents a schematic
view of this numerical user interface proposal where the
mobile device communicates with a cloud computing within
which data are processed in the Pyhton source codes and from
which streamed text data is returned/sent to the mobile device

to generate the graphical visual results.

ﬁ' ( J@
Compuﬁng) |
gl
o 99399

Fig. 2 Cloud and mobile connection model

Fig. 3 presents a simple interface under development by this
work team group to attempt this mobility demand. It has been
performed under the Apache Cordova to support Web 2.0
applications (HTMLS5, CSS and JS). The development itself
has been made under the Ionic Framework, allowing the
application to run in Android and iOS platforms. We intend to
comment on that during the conference.

e Insert v

"

Maximum n for optical forces - radiation pressure cross |
sections

Maximum m for optical forces - radiation pressure cross
sections

distmax, distmin ¢ no. of steps

Maximum and minimum distance belween lucus/oplical
axis and center of the scatterer and number of steps

Fig. 3 Input interface parameters

C. Numerical Results

In subsection A (Section III) it was considered the
development of a numerical algorithm devoted to the task of
evaluating the optical forces exerted exclusively over spherical
particles. Python language was adopted and the equations of
Section I were then implemented. This means that, at first,
only those forces arising from the interaction between
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spherical scatterers and zero-order scalar BBs and their
discrete superpositions can be analyzed. Obviously, higher
order beams, in addition to other laser beams (e.g., Gaussian
beams), shall be included in due time.

Here, we present two simple examples of FWs, the first
being given by an ideal constant intensity profile, the second
by an also ideal growing exponential, both limited to the range
—0.3L <z <0.3L with L = 1 mm. The expected longitudinal
intensity patterns are seen in Figs. 4 and 5, respectively. They
were obtained by superposing 2N + 1 = 31 BBs, all with the
same wavelength (in vacuum) of A = 1064 nm. In contrast
with the ideal constant and exponential slopes, here we some
unavoidable ripples due mainly to the fact that, from (2), a
finite sum (31 terms) must be imposed in deriving F(z) [3-5].
These are examples of graphical outputs at the display of the
mobile device.

12

10F

|Psiz{0,z)| [W/m]2
o = =
- [=3] [==]
T T T

=
L)
T

DG 1 1 1 1 1 1 1
-04 -03 =02 =01 0o 01 02 03 04
Z [mmi]

Fig. 4 |¥(0,2)* for an ordinary FW with a constant longitudinal
intensity profile. L =1 mm

|Psi{0,z)| [W/m]2

01 02 03 04

04 03 02 01 00

Z [mm]
Fig. 5 |¥(0,z) for an ordinary FW with a growing exponential
profile. L =1 mm

Consider now a dielectric sphere with radius a = A/50, i.e., a
nano-scatterer of radius =~ 21.3 nm, immersed in water. The
relative permittivity (to water) is taken as 1.1. When incident
upon by the FWs shown in Figs. 4 and 5 (and disregarding any
Brownian motion effects), the expected longitudinal force
component [see (6)] is as shown in Figs. 6 and 7. All special
functions were implemented in Python using open-source

subroutines.

It is clearly seen in Figs. 6 and 7 that some of the points
associated with zero longitudinal force (marked as "A", "B"
and so on) indeed correspond to positions of stable
longitudinal equilibrium. It can be shown, additionally, that
such points do correspond to effective three-dimensional traps
because of the presence of radial forces directing the particle
towards the optical axis (» = 0) of the beam. We intend to
comment more on the physical interpretation of those slopes,
on the mathematical derivation of FWs and on the numerical
code developed in Python and under adaptation for easy-of-
use from mobile devices during the conference.

-0 -am 0 Tam T a0
2 (o)
Fig. 6 Longitudinal force (r = 0), calculated from Cp.- as given by
(6), over a dielectric sphere of radius a = A/50 and relative
permittivity (to water) of 1.1, assuming the constant pattern FW (Fig.

4). Examples of points of stable equilibrium are marked as "A" and
HB"

—400 —200 0 200 400
£ (pam)

Fig. 7 Same as Fig. 6, but now for the growing exponential FW of
Fig. 5

IV. CONCLUSIONS

This work is intended to update the usual Fortran numerical
modeling in a Python script source code for the evaluation of
optical forces exerted over spherical particles from ordinary
scalar Bessel beams and their discrete superpositions,
streaming data (unknowns, input parameters and so on) from
and to mobile devices.

Indeed, the development of such a code is challenging, first
because of all the necessary mathematical and physical
background encompassing vector calculus, light scattering and
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laser beam description by means of the generalized Lorenz-
Mie theory, and second because it demands the inclusion of
already developed functions (freely available online) in
different libraries, such as associated Legendre Polynomial,
spherical Bessel functions or Ricatti-Bessel functions and also
derivatives with respect to their arguments [31]. Furthermore,
some of these already developed functions are not completely
suitable for this application, which led us to implement
updates and modifications on some of their internal source
codes. On the other hand, the adoption of this script language
simplifies and automates the graphical results presentation,
because it is now in the source code available by the Python
Matplotlib library [32].

This back-end data processing solution allowed us to also
present our efforts towards a mobile application interface in
which the users are able to specify predefined input values and
parameters and send them to cloud computing to be processed
by this Python solution. Afterwards, these graphical and
numerical results are streamed back to the user (mobile
device) for visualization purposes.

Although initially intended to provide reliable outputs
(optical forces) only for a restrict class of nondiffracting laser
beams, our code can be easily modified to account for other
wave fields traditionally adopted in optical trapping and
micromanipulation, viz., Gaussian beams, top-hat beams,
Laguerre-Gaussian beams and so on. Our initial tests have
been quite promising, but the entire solution involving Bessel
beams and their discrete superpositions is still under
development and shall become freely available in the near
future.
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