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Abstract—The adjoint method has been used as a successful tool to
obtain sensitivity gradients in aerodynamic design and optimisation
for many years. This work presents an alternative approach to the
continuous adjoint formulation that enables one to compute gradients
of a given measure of merit with respect to control parameters other
than those pertaining to geometry. The procedure is then applied to
the steady 2–D compressible Euler and incompressible Navier–Stokes
flow equations. Finally, the results are compared with sensitivities
obtained by finite differences and theoretical values for validation.
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I. INTRODUCTION

IT is widely recognised that the use of CFD has made

an extraordinary impact on virtually all branches of fluid

mechanics. Traditionally, CFD resources have played a crucial

part in the analysis of flow physics, thus fulfilling functions

that are complementary to those of wind-tunnel testing.

More recently, though, the development of algorithms and

enhancement of computational power have opened up new

possibilities, thus enabling one to explore the design space

more efficiently and to achieve more elaborate design goals.

The adjoint method has played a prominent role in that

context, for a number of reasons. Among them one could cite

the great flexibility it offers with regard to the flow-physics

model and to the definition of objective functionals. Originally

proposed by Pirronneau [1] for elliptic problems, it was later

extended to transonic flows by Jameson [2]. Over the years,

it has become the subject of extensive research activity [3],

[4], [5], [6], [7], [8], [9], [10], and spawned a wide variety of

applications, ranging from nuclear reactor thermal–hydraulics

to atmospheric sciences [11], [12].

In aerodynamics, the developments of the adjoint method

encompass design applications regarding internal and external

flows [13], [14], [15], [16] and, more recently, unsteady flows

[17], [18], [19], [20]. An entirely different area of research

has evolved around the ideas of error analysis [21], [22] and

grid adaptation [23], [24], [22], [25]. It makes use of the

adjoint variables to improve the accuracy of functionals, which

measure desired qualities of the flow solution [26], [27], [28],

[29].

Despite all the developments about the adjoint method listed

above, there are some research fields that have not been well

explored in the literature. The idea presented in this work,

for example, was originally proposed by Cacuci et al. [11]
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in a seminal reference to compute general sensitivities in

a transient problem in fast reactor thermal hydraulics. On

using this approach to aerodynamic applications, one could

compute important non–geometric sensitivity derivatives, as

those related to inflow boundary conditions. In what follows,

a brief account of that material is presented, the reader is

referred to the original paper [11] for further details.

II. SENSITIVITY THEORY FOR GENERAL SYSTEMS

Objective functionals of general interest in aerodynamics

depend on flow variables and on the shape and location of the

boundaries [30], [31]. Initially, one takes a measure of merit

of a given physical system in generic form:

Io[Q, α] =

∫
χ

F [Q(χ), α(χ), χ]dχ (1)

where the vector Q represents the coordinates of that system

in state space. The vector χ gives coordinates in phase space

of the points in the domain of interest — in the applications

that are considered here, it corresponds to the physical space.

Finally, vector α represents the set of parameters that control

the system. In generic form, one would have

Q(χ) = [Q1(χ), . . . QK(χ)] (2)

χ = (χ1, . . . , χJ) (3)

α(χ) = [α1(χ), . . . , αI(χ)] (4)

on defining inner products of the form:

〈Φ,Ψ〉 =
∫
D

Φ ·Ψ dχ ; 〈Φ,Ψ〉s =
∫
∂D

Φ ·Ψ dχ (5)

in the physical domain and on its boundaries, respectively.

The first Gâteaux variation [32] of the functional (1) yields

the expression,

δIo =
〈F ′

Q, δQ
〉︸ ︷︷ ︸

δIoQ

+ 〈F ′
α, δα〉︸ ︷︷ ︸
δIoα

(6)

where the first term on the RHS, δIoQ, corresponds to the

physical part of the total variation, whereas the second, δIoα,

represents the parametric part, in the applications of interest

here. In general, the term F ′
αδα(χ) is known in closed form

and, thus, the variation δIoα can be evaluated analytically.

The greatest difficulty in estimating δIo lies in the first term,

δIoQ, instead. For the variation δQ(χ) is seldom known in

closed form, even though F ′
Q, itself, may be. In effect, the

mere presence of δIoQ in the total variation is indicative of
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the need for additional flow simulations, as the finite difference

method requires.

The need for additional flow simulations could be avoided,

if one could ensure that all physical variations δQ(χ)are

realizable. This is exactly what the adjoint method does by

imposing the governing equations as realizability constraints

to the variational problem. In order to do it, consider that the

system is governed by a set N of K nonlinear PDE’s, which,

in turn, are subject to a set B of boundary conditions. In terms

of operators,

N[Q(χ), α] = R(χ, α) (7)

B[Q(χ), α]s = 0 (8)

Then, one can define the augmented functional:

G(Q, α,Φ, β, a) = Io(Q, α)− 〈Φ,N−R〉+
−〈β,B〉s − 〈a, α− αo〉 (9)

Usually non–holonomic, the constrains are introduced by

the Lagrange multipliers Φ, β and a, in the last three

functionals of (9). The first of them imposes the governing

equations, while the second enforces the corresponding

boundary conditions, and the third ensures that the control

parameters take on a given set of prescribed values α = αo,

which corresponds to a baseline configuration.

In order to determine the extrema of G, it is necessary to

compute its variation, δG. To achieve this goal, consider that

the Fréchet differentials of equations (7) and (8) are given by:

LδQ = Sδα (10)

B′
QδQ = −B′

αδα (11)

where the operator L ≡ N′
Q is the linearized form of the

governing equations, whereas S ≡ R′
α − N′

α, corresponds

to variations of control parameters. Finally, by computing

the Gâteaux variations of the remaining functionals and on

combining them with the above results, one obtains the first

variation of the augmented functional, δG:

δG =
〈F ′

Q, δQ
〉
+ 〈F ′

α, δα〉 − 〈δΦ,N−R〉+
− 〈Φ,LδQ〉+ 〈Φ,Sδα〉 − 〈δβ,B〉s −

〈
β,B′

QδQ
〉
s
+

− 〈β,B′
αδα〉s − 〈δa, α− αo〉 − 〈a, δα〉 (12)

Then, on making use of Gauss’ theorem, one can transfer the

differential operators from the state vector Q to the Lagrange

multiplier Φ as:

〈Φ,LδQ〉 = 〈L∗Φ, δQ〉 − P [Φ, δQ]s (13)

where the term P [Φ, δQ]s is the bilinear concomitant the

operation ensues [11], [33]. It is seen as an inner product

between Φ and δQ and gives rise to the adjoint boundary

conditions B∗(Φ) = 0. Furthermore, the first term on the RHS

of (13) contains L∗, which is the adjoint operator to L.

On combining terms in a convenient way, one has:

δG = −〈δΦ,N−R〉 − 〈δβ,B〉s − 〈δa, α− αo〉+
+
〈
L∗Φ−F ′

Q, δQ
〉− 〈

β,B′
QδQ

〉
s
+

−
[〈
P1(Φ),B

′
QδQ

〉
s
+ 〈B∗(Φ),AδQ〉s

]
+

+ 〈F ′
α, δα〉+ 〈Φ,Sδα〉 − 〈a, δα〉 − 〈β,B′

αδα〉s(14)

where the bilinear concomitant P [Φ, δQ]s of (13) has been

decomposed into two inner products within square brackets.

Both of them must be computed over the appropriate

boundaries. The first of them involves P1(Φ) and the

linearized boundary operator B′
QδQ, whereas the second

involves the adjoint boundary operator B∗(Φ) and AδQ.

The decomposition of P is not unique, and neither are the

definitions of P1 and A. On the contrary, the only restriction

that is actually imposed on the procedure is that the operator

A be linearly independent of B′
Q.

The augmented functional G realizes extrema upon the

condition that (14) vanishes for arbitrary, albeit realizable,

variations of its parameters:

δG = 0 ∀ {δQ, δα, δΦ, δβ, δa} ∈ {locus of realizability}
(15)

That, in turn, requires that the following conditions be met:

I. The flow governing equations (7) and their respective

boundary conditions (8) are satisfied. In addition,

the control parameters should take on the prescribed

baseline values, α = αo. These requirements imply that

the first three terms of (14) are identically zero.

II. On imposing the condition,

β = −P1(Φ) , (16)

one drives to zero the sum of the fifth and sixth terms of

(14). This particular equation also solves the β in terms

of the Φ.

III. The vector Φ must satisfy the adjoint equation, which

is given by:

L∗Φ−F ′
Q = 0 , (17)

as it appears in the fourth term of (14). The

corresponding boundary conditions are given by the

operator

B∗(Φ) = 0 , (18)

which comes from the seventh term in that equation.

Equation (18) should determine the Φ at the boundaries,

along with the β thereof.

IV. The vector a is specified by the following condition:

〈a, δα〉 = 〈F ′
α, δα〉+ 〈Φ,Sδα〉 − 〈β,B′

αδα〉s (19)

which collects all the remaining terms when δG = 0. In

fact, this is the realizable part of the sensitivity gradient,

δIo, as will be shown next.

To prove the above statement regarding the sensitivity

gradient [11], suffices it to recognize that: If the governing

equations (7) and (8) are identically satisfied for a given

variation ΔG, of any size. Then, from the definition of G
in (9):

ΔG = ΔIo − 〈a,Δα〉

for

⎧⎨
⎩
ΔG ≡G(Q2, α2; Φ2, β2, a2)−G(Q1, α1; Φ1, β1, a1)
ΔIo ≡ Io(Q2, α2)− Io(Q1, α1)
Δα ≡α2 − α1

(20)

In particular for an infinitesimal variation ΔG → δG, under

the above conditions and where Φ, α and β fulfill the above
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requirements I–IV, there must correspond a stationary value

of G. Therefore, one can write

δG = δIo − 〈a, δα〉 = 0

δIo = 〈F ′
α, δα〉+ 〈Φ, (R′

α −N′
α) δα〉+ 〈P1(Φ),B

′
αδα〉s

δIo = 〈a, δα〉 (21)

where (16), (19) and the definition of S have been used. With

the above expression (21), one can estimate the sensitivity

gradient on the basis of the adjoint solution Φ and parameter

variations δα, alone.

III. COMPRESSIBLE EULER FORMULATION

The rationale behind the adjoint method consists of

separating physical from geometric variations. On doing so,

one can eliminate physical variations by solving the adjoint

problem. To that end, it is convenient to write the governing

equations in terms of generalized coordinates. Equation (22)

bellow presents the well–known Euler equations written in this

form [34]:
∂Qα

∂t
+

∂F k
α

∂ξk
= 0 (22)

ξk represents the generalized coordinates. The state Qα and

flux fk′
α vectors are defined by:

Qα ⇒
⎛
⎝ ρ

ρui′

e

⎞
⎠ ; fk′

α ⇒
⎛
⎝ ρuk′

ρui′uk′
+ pgi

′k′

(e+ p)uk′

⎞
⎠ (23)

The symbol e represents total energy, e = ρ(ei + u · u/2), ei
denotes the specific internal energy and the gi

′j′ stands for the

metric tensor.

On applying the procedure described in the previous

section to the steady form of (22), one obtains the following

expression for δG:

δG=

〈
δφα,

∂F k
α

∂ξk

〉
+ 〈δβ,B〉si + 〈δa, α− αo〉︸ ︷︷ ︸

(a)

+

−
〈
Ck

αβ

J

∂(Jφα)

∂ξk
, δQβ

〉
︸ ︷︷ ︸

(b)

−
〈
δ
(
Jβk

i′
)
,
f i′
α

J

∂(Jφα)

∂ξk

〉
︸ ︷︷ ︸

(c)

+

+

〈
βα

∂Bα

∂Qβ
+ φαC

2
αβn2, δQβ

〉
si︸ ︷︷ ︸

(d)

+

+
〈
φαC

2
αβn2, δQβ

〉
so︸ ︷︷ ︸

(e)

+
〈
φα, δ

(
Jβ2

i′
)
f i′
α n2

〉
b∞︸ ︷︷ ︸

(f)

+

+

〈
∂F
∂Qα

∣∣∣∣dS′

dS

∣∣∣∣+ [
φ(i′+1)Jβ

2
i′n2

] ∂p

∂Qα
, δQα

〉
bw︸ ︷︷ ︸

(g)

+

+

〈
F , δ

∣∣∣∣dS′

dS

∣∣∣∣
〉

bw

+
〈
p,
[
φ(i′+1)δ

(
Jβ2

i′
)
n2

]〉
bw︸ ︷︷ ︸

(h)

+

+ 〈a, δα〉+ 〈β,B′
αδα〉si︸ ︷︷ ︸

(i)

(24)

where βk
i′ is the transformation operator between the Cartesian

and the transformed space, f i′
α corresponds to Cartesian flux

vectors and Ck
αβ are generalized flux Jacobian matrices. The

parametric flux variations at the inflow and outflow portions of

the farfield boundary have been collected in the term f using:

si ∪ so ⇒ b∞. It has also been assumed that that boundary

maps onto a constant coordinate plane, b∞ ⇒ ξ2 = 1.

A separation between physical and parametric variations is

apparent in the above equation. The terms a, b, d, e and g
belong in the former group, which gives rise to the adjoint

problem. The remaining terms c, f , h and i are part of the

sensitivity gradient and are reproduced below:

〈a, δα〉 = −
〈
φα, δ

(
Jβ2

i′
)
f i′
α n2

〉
b∞

−
〈
F , δ

∣∣∣∣dS′

dS

∣∣∣∣
〉

bw

− 〈
p,
[
φ(i′+1)δ

(
Jβ2

i′
)
n2

]〉
bw

− 〈β,B′
αδα〉si +

+

〈
δ
(
Jβk

i′
)
,
f i′
α

J

∂(Jφα)

∂ξk

〉
(25)

Among them, only the fourth term on the RHS of (25)

concerns inflow sensitivity. The others represent geometrical

variations, and they can be further simplified [35]. In the

absence of geometry variations, the gradient becomes:

〈a, δα〉 = −〈β,B′
αδα〉si (26)

From the equations that are given above, one can either

derive integral expressions for the sensitivity derivatives or,

alternatively, one can simply compute them numerically. In

any case, it is worth adding that neither form depends

explicitly on the measure of merit. On the contrary, all

influence of that functional, which they must certainly bear,

comes through the adjoint solution itself.

A. Adjoint Boundary Conditions

It is clear in (26) that the gradient expression depends

explicitly on the adjoint variables at inflow boundaries.

Hence the traditional homogeneous conditions would erase an

invaluable piece of sensitivity information at that boundary,

even though they would drive the bilinear concomitant to

zero, as expected. In order compute these inflow sensitivities,

it is necessary to solve the contour problem in terms of

characteristics equations. In particular for Euler flows, both

fluid dynamics and adjoint equations entail complementary

Riemann problems, and these yield boundary conditions that

are fully consistent with well–posedness [34].

On comparing the adjoint boundary conditions terms d, e
and h from (26) with the usual adjoint formulation [34], one

can realize that only the inflow term d is new. For this reason,

it will be our focus here.

Since the flow regime defines the boundary problem, we

consider first the supersonic case, where all primitive variables

V = (ρ, u, v, p)T are fully specified. Conversely, the φ are free

at inflow boundaries and comes from the adjoint solution. As
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a result, the adjoint boundary operator B∗ is the null matrix,

while B′
Q is the identity matrix, and (11) becomes:

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝
δQ1

δQ2

δQ3

δQ4

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 0 0 0
u ρ 0 0
v 0 ρ 0

u·u
2 ρu ρv 1

(γ−1)

⎞
⎟⎟⎠
⎛
⎜⎜⎝
δρ
δu
δv
δp

⎞
⎟⎟⎠
(27)

where the square matrix on the RHS clearly represents the

operator −B′
α ≡ −B′

V . Besides, it may be added that,

although the variables Q and V are fixed for each particular

flow solution, taken individually, it does not imply that their

virtual variations about that solution are necessarily zero. In

fact, the flow sensitivity to such virtual variations is precisely

the main objective of the investigation.

Notice that the condition B∗(Φ) = 0 drives to zero

the second term of the bilinear concomitant decomposition

〈B∗(Φ),AδQ〉, as can be seen in (14). It also enables one

to choose any A that is linearly independent of B′
Q so as to

satisfy Cacuci’s requirement. Finally, from (27) the matrix B′
α

can be obtained for supersonic flows controled by primitive

variables at inflow boundaries:

B′
α = −

⎛
⎜⎜⎝

1 0 0 0
u ρ 0 0
v 0 ρ 0

u·u
2 ρu ρv 1

(γ−1)

⎞
⎟⎟⎠ (28)

For subsonic flows, there is only one incoming adjoint

characteristic. The conditions that are usually prescribed are:

flow direction, ϑ = tan θ; stagnation pressure, po; and

temperature, To. On writing them in terms of conservative

variables Q and setting their variations to zero, one can

obtain three equations for the allowed physical variations,

say δQ2, δQ3 and δQ4 as a function of the remaining δQ1.

Then, on taking the quantities that are imposed as boundary

conditions to be the control parameters, one gets the relation

B′
QδQ = −B′

αδα :

⎛
⎜⎜⎜⎝

0 0 0 0
∂Q2

∂Q1
−1 0 0

∂Q3

∂Q1
0 −1 0

∂Q4

∂Q1
0 0 −1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝
δQ1

δQ2

δQ3

δQ4

⎞
⎟⎟⎠=−

⎛
⎜⎜⎜⎝

0 0 0
∂Q2

∂po

∂Q2

∂To

∂Q2

∂ϑ
∂Q3

∂po

∂Q3

∂To

∂Q3

∂ϑ
∂Q4

∂po

∂Q4

∂To

∂Q4

∂ϑ

⎞
⎟⎟⎟⎠
⎛
⎝δpoδTo

δϑ

⎞
⎠

(29)

This procedure leads precisely to the same expressions that

are proposed by [34]. It implies that the same inflow adjoint

condition can be used here. On substituting the variation δQ
from the LHS of (29) to the inflow boundary condition term〈
β,B′

QδQ
〉
Si

in (14), one can choose β that forces this term

to vanish. It results in an expression in the form:

C1φ1 + C2φ2 + C3φ3 + C4φ4 = 0 (30)

where, Ci are coefficients that depend only on flow properties.

In operator form, one gets the adjoint boundary conditions

B∗(Φ) = 0, that correspond to a locus in state space where the

adjoint vector is normal to all realizable variations: Φ ⊥ δQ.

And the B′
α matrix becomes:

B′
α =

⎛
⎜⎜⎜⎜⎝

0 0 0
ρu

M2Po

u
2To

(
ρ− 2ρ

M2

) − ρ2u2v
γM2p

ρv
M2Po

v
2To

(
ρ− 2ρ

M2

)
ρ2u3

γM2p
(γ−1)p

Po

γp
T

[
1

(γ−1) − T
To

]
0

⎞
⎟⎟⎟⎟⎠ (31)

where the first line of both operators simply means that δQ1

is free, in that it represents the effects on the boundary of

arbitrary variations in the flow domain.

Therefore, to compute the adjoint inflow sensitivities, one

should substitute B′
α in (26) by (31) for subsonic and by (28)

for supersonic flows.

For illustration, Table I shows a summary of the inflow

adjoint boundary conditions.

TABLE I
SUMMARY OF ADJOINT INFLOW BOUNDARY CONDITIONS

Regime State vector variation Co–state vector B.C.

subsonic δQ2(δQ1), δQ3(δQ1), φ1(φ2, φ3, φ4)
δQ4(δQ1)

supersonic δQi = 0 φi are free

IV. INCOMPRESSIBLE NAVIER–STOKES FORMULATION

This section is dedicated to construct the adjoint problem

for incompressible unsteady Navier–Stokes flows. For that

purpose, consider the governing equations:{
∂ou+ (u · ∇)u+ v∇p− ν∇2u = 0

∇ · u = 0
(32)

Then, one can obtain the expression for the augmented

functional on imposing the realizability constraints, exactly

as it was done in Section III for flows governed by the Euler

equations:

G =
1

T

T∫
0

∮
Bw

F
∣∣∣∣dS′

dS

∣∣∣∣ dSdt+
1

T

⎧⎨
⎩
∫
D

θ∇ · u dχ+

−
∫
Ω

ψ · [∂ou+ (u · ∇)u+ v∇p− ν∇2u
]

dΩ

⎫⎬
⎭+

+
1

T

T∫
0

∮
Si

β
(
ui − f i

)
dSdt+ 〈a, α− αo〉 (33)

The measure of merit is usually a functional of the flow

variables, as shown in (1). However, body surface integrals

are particularly interesting for design applications. Hence one

may consider an integral of the dimensionless force the fluid

exerts on the body surface, projected onto a given direction e:

F (n · σ · e) = F kek − pnkek (34)

where σ is the fluid stress tensor (σ = τ − p I), vector n
represents the unit normal to the body surface, and e denotes

for the direction of projection.



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:1, 2016

159

The physical space is represented by (xi′ , t) in Cartesian

coordinates. The flow domain D and the time span define the

full domain of the problem Ω = D × (0, T ).
On computing the first variation of G, one gets:

TδG=

∫
Ω

{
ϕj |jvδp+

[
∂oϕi + ujϕi|j − ϕju

j |i −Θ|i+

+ ν
(
ϕi|j + ϕj |i

) |j]δui
}

dξdt−
T∫

0

∮
∂D

{[
ujϕinj−Θni+

+ ν(ϕi|j + ϕj |i)nj
]
δui+v

(
δpni−δF i

)
ϕi

}
dSdt+

−
⎡
⎣∫
D

ϕiδu
idV

⎤
⎦T

0

+

T∫
0

∮
Bw

δF
∣∣∣∣dS′

dS

∣∣∣∣ dSdt+

+

T∫
0

∮
Bw

Fδ

∣∣∣∣dS′

dS

∣∣∣∣ dSdt+

∫
Ω

Θ

J

[
δ
(
Jβk

q′
)
uq′

]
,k

dΩ+

−
∫
Ω

ϕr′

J

{
∂o

(
δJur′

)
+
[
δ
(
Jβj

n′

)(
ur′un′

+

+ gr
′n′

pv − νur′
,p′gp

′n′)]
,j

}
dΩ+

+

T∫
0

∮
Si

β

(
δui− ∂f i

∂αk
δαk

)
dSdt+

T∫
0

∮
Si

δβ
(
ui−f i

)
dSdt+

+ 〈a, δα〉+ 〈δa, α− αo〉 (35)

On driving the first domain integral of (35) to zero for

arbitrary physical variations δu and δp, one obtains the

incompressible Navier–Stokes adjoint equation:{
ϕj |j = 0

∂oϕi + ujϕi|j − ϕju
j |i −Θ|i + νϕi|j |j = 0

(36)

where ϕ is the adjoint velocity vector and Θ is the adjoint

pressure. The adjoint boundary conditions are obtained by

pursuing the same rationale as in Section III, but now with

respect to the second and fourth integrals in (35). The third

integral in that equation corresponds to the time conditions

and it is driven to zero by assuming that ϕt=T = 0. The set

of adjoint boundary conditions is given by Table II.

TABLE II
ADJOINT BOUNDARY CONDITIONS FOR THE INCOMPRESSIBLE

NAVIER–STOKES EQUATIONS

contour flow adjoint

inflow fixed u ϕ = 0

outflow ∂u
∂n

= 0
∂ϕ
∂n

= − (u·n)ϕ
ν

fixed p Θ = 0

wall u = 0 ϕ = −ρ ∂F
∂F

∣∣∣dS′
dS

∣∣∣
sym. plane u · n = 0 ϕ · n = 0

∂ut

∂n
= ∂p

∂n
= 0

∂ϕt

∂n
= ∂Θ

∂n
= 0

The remaining terms in (35) represent the sensitivity

gradient:

TδG =

T∫
0

∮
Bw

F δ

∣∣∣∣dS′

dS

∣∣∣∣ dSdt+

∫
Ω

Θ

J

[
δ
(
Jβk

q′
)
uq′

]
,k

dΩ+

−
∫
Ω

ϕr′

J

{
∂o

(
δJur′

)
+
[
δ
(
Jβj

n′

)(
ur′un′

+

+ gr
′n′

pv − νur′
,p′gp

′n′)]
,j

}
dΩ

+

T∫
0

∮
Si

β

(
δui − ∂f i

∂αk
δαk

)
dSdt+ 〈a, δα〉 (37)

As for control parameters that are not related to flow

geometry, they are also imposed as variational constraints

on the problem. In essence, boundary condition constraints

are imposed by surface integrals, which are not subject to

integration by parts. For the sake of space, we refer the reader

to [36], [11] for further details on this portion of the derivation.

The final expression for the sensitivity gradient reads:

〈a, δα〉 =
T∫

0

∮
Si

[
ν (ϕi|j + ϕj |i)nj −Θni

] ∂f i

∂αk
δαkdSdt

(38)

V. RESULTS

The results presented in this section correspond to validation

test cases for both formulations described in Sections III and

IV, where the sensitivity gradients obtained by the proposed

approach of the adjoint method are compared with finite

differences and theoretical values.

A. Compressible Euler Flow Simulations

The flow and adjoint solutions alike were computed on

unstructured meshes with triangular elements. The numerical

simulations for both physical and adjoint PDE’s have been

run with a cell–centered finite volume method, by using 2nd

order 5–step Runge–Kutta time–stepping scheme [37] with

characteristics–based boundary conditions [34].

The results for compressible Euler are presented for internal

and external flows. The former corresponds to flows through

a divergent nozzle in both subsonic and supersonic regimes,

while the latter corresponds to supersonic flows over a

diamond profile. In all compressible test cases, the measure

of merit is a pressure integral over the wall surface, which is

projected onto the flow normal direction. For simulations over

airfoils, it corresponds to the lift force, and it is given by:

Io =

∮
Bw

pn · e dS (39)

where n is the normal unit vector pointing into the wall

surface and e is the vertical unit vector, which is normal to

the freestream direction.

The dimensionless form of the flow variables is defined on

the basis of a reference state, which is the same for all tests in



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:10, No:1, 2016

160

Section V-A. The reference values are: specific mass, ρref =
1.486 kg/m3; velocity, vref = 320.33 m/s; and temperature,

Tref = 357.77 K.

The computational mesh of the divergent nozzle is shown

in Fig. 1. The idea behind the choice of this geometry is to

avoid shock waves in the validation procedure.

Fig. 1 Divergent nozzle mesh

A comparison between gradients that are obtained by finite

differences and the adjoint method is presented in Fig. 2 for

subsonic flows with entrance Mach numbers ranging from 0.47
to 0.75. As was mentioned in Section III, inflow angle of

incidence, stagnation pressure and temperature are taken as

control parameters. Then the gradients obtained are ∂I/∂po,

∂I/∂To and ∂I/∂ϑ. The differences between both methods

remain below 2.9× 10−3 for all components.

Fig. 2 Gradients of a subsonic flow in a divergent nozzle. Red, ∂I/∂po;
blue, ∂I/∂To; green, ∂I/∂θ. Solid x, finite difference; dash-dot o, adjoint

method

Fig. 3 presents the same comparison for supersonic flows.

However, in this case the primitive variables are taken as

control parameters. Naturally, the gradients obtained are

∂I/∂ρ, ∂I/∂u, ∂I/∂v and ∂I/∂p. The simulations were

performed for Mach numbers ranging from 1.5 to 2.5. In

this case, the differences between both methods remain below

4.6× 10−4 for all components.

It is interesting to progressively increase the complexity of

test cases. Following this idea, the next results correspond

to the evaluation of the same sensitivities that are described

above, but now for the external flow over a diamond profile.

The geometry was chosen so as to have the shock waves

Fig. 3 Gradients of a supersonic flow in a divergent nozzle. Red, ∂I/∂ρ;
blue, ∂I/∂u; green, ∂I/∂v; magenta, ∂I/∂p. Solid x, finite difference;

dash-dot o, adjoint method

attached to the solid surfaces. In order to illustrate the problem,

Fig. 4 shows Mach contours of one test case where the farfield

Mach number, M = 2.0, and the angle of incidence, θ = 4◦.

Fig. 4 Mach contour of a diamond profile. Farfield Mach number, M = 2.0,
and the angle of attack, θ = 4◦

The comparison between finite differences and adjoint

method gradients is shown in Fig. 5. As it can be seen, the

sensitivities are in good agreement for all components of the

gradient. In this case, the differences between them remain

below 1.7× 10−2 for all components.

B. Incompressible Navier–Stokes Simulations

Both physical and adjoint simulations were performed by

using the code SEMTEX. It is a high order computational

code, which has been developed by [38], and which is based

on spectral/hp element method.

The test case here consists of a flow through a two

dimensional channel. A scheme of the flow is shown in Fig.

6.

The length scale for the channel flow is the hydraulic

diameter (Dh):

Dh = 2.H (40)

The computational mesh for flow and adjoint simulations is

shown below. It was generated with Gambit and has 1020

quadrilateral elements.
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Fig. 5 Sensitivity gradients of the lift with respect to the primitive variables
in a supersonic flow over a diamond profile with angle of attack, θ = 4◦.
Red, ∂I/∂ρ; blue, ∂I/∂u; green, ∂I/∂v; magenta, ∂I/∂p. Solid x, finite

difference; dash-dot o, adjoint method

Fig. 6 Flow through a 2–D channel between two flat plates separated by a
distance of H and with length L

The mesh is defined in −1 ≤ x ≤ 100. For visualization

purposes it is shown only the region near the inflow boundary.

Fig. 8 shows both flow and adjoint solutions. The simulation

parameters are Re = 30, polynomial order P = 10 and 40000
time steps, each one with magnitude Δt = 10−3.

The analytical expression for the gradient dCd

dU∞ is:

dCd

dU∞ = − 48

U∞Re
(41)

The sensitivity gradient expression for this specific case is:

dCd

dU∞
=

1

Re

∫
S̃i

{
[∇ϕ+ (∇ϕ)T ]−ΘI

}
n dS̃ (42)

Simulations are taken for different values of Re and, for each

one, the gradient is computed. The results are shown on Fig.

7.

The red curve corresponds to the analytical expression

whereas the blue circles represent the adjoint gradients. It

is possible to see that the adjoint gradients are quite close

to the analytical ones (error less than 1%), proving that it

is possible to compute a non-geometric sensitivity using the

adjoint method.

VI. CONCLUSION

The main objective of this paper has been to illustrate a

novel approach to computing non–geometric sensitivities with

the adjoint method. It makes use of the same adjoint solution

Fig. 7 Computational mesh for the 2–D flow

(a) Flow solution with streamtraces and countours of horizontal
velocity u

(b) Adjoint solution with streamtraces and contours of adjoint
pressure Θ

Fig. 8 Flow through a 2–D channel. Details for flow and adjoint solutions

that is used for geometry optimisation. The 2–D flows have

been chosen for this purpose, for their simplicity. However,
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Fig. 9 Sensitivity gradient dCd/dU∞. Red line, analytical expression; blue
circles, adjoint method

from the theoretical point of view, the same approach can be

applied to 3–D flows just as well. Moreover, it has been shown

that these findings can be applied to internal and external flows

alike, in both subsonic and supersonic regimes, as well as for

viscous incompressible flows. The results for supersonic flows

with shock waves show less accuracy, when compared to the

others. To tackle that problem, we are currently investigating

the effects of mesh refinement and shock smearing, and we

have gotten some encouraging results, albeit preliminary.

Although still limited in scope, the above results open

up some interesting possibilities of further research. First

and foremost the extension to 3–D flows, which is merely

algebraic, would allow one to use this approach to evaluate

stability derivatives, for flight dynamics applications. The idea

of extending the approach to compressible viscous flows is

certainly attractive, but it is further down the road. Time

dependent flows are also a promising subject. In effect, the

formulations for incompressible viscous is already compatible

with transient flows, and we are working on it.
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