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Abstract—High double excitation of two-electron atoms has been 

investigated using hyperpherical coordinates within a modified 
adiabatic expansion technique. This modification creates a novel 
fictitious force leading to a spontaneous exchange symmetry breaking 
at high double excitation. The Pauli principle must therefore be 
regarded as approximation valid only at low excitation energy. 
Threshold electron scattering from high Rydberg states shows an 
unexpected time reversal symmetry breaking. At threshold for double 
escape we discover a broad (few eV) Cooper pair. 

 
Keywords—Correlation, resonances, threshold ionization, Cooper 

pair. 

I. INTRODUCTION AND PREVIOUS WORK 
HE simplest atom which allows correlation phenomena is 
the two-electron atom like He. We consider here helium-

like atoms with the Hamiltonian in nonrelativiistic 
approximation given by (in a. u.) 
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where 21 , rr
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 are the electron position vectors with respect to 

an infinitely heavy nucleus, the potential is given by 
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where Z is the nuclear charge. 

The Hamiltonian commutes with three trivial symmetry 
operations: Parity, electron exchange and overall rotations. 
Common eigenstates of energy, spin, parity and orbital 
angular momentum exist. 

Single-electron coordinates are not suitable to study 
correlation phenomena. In this paper we consider the charge 
cloud as a whole, and employ the quantity R related to the 
trace of the inertia tensor I 
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as collective coordinate. Alternatively, this coordinate may be 
considered as radius of a five-sphere 

65 RS   because the 

position space of both electrons has dimensioned six i.e. each 
point on 

5S  represents one electron pair configuration. We 

simplify further the problem by restricting ourselves at the 
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moment to pure S-sates. To eliminate overall rotations we cut 
out a three-sphere from the five-sphere. Thus we arrive at a 
two-sphere

32 RS  . One point on this 
2S  stands for a non-

rotating two-electron configuration. The radius of 
2S  is equal 

to R given by (3). Now we introduce polar angles on 
2S . To 

this end we consider the tensor of inertia in its diagonal form 
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with R given by (3). The parametrisation (4) takes into 
account the relation 

zzyyxx III   valid for plane bodies. 

Here we have put the body-fixed x-axis into the direction of 
the smallest principal moment of inertia. The angle   is 

therefore limited by 
4||0   . The physical meaning of this 

angle is the asymmetry of the inertia given by 
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The geometrical meaning of this angle is easy: 0  

describes all collinear configurations, whereas 
4
   

corresponds to symmetric tops. Between these two values we 
find all asymmetric tops. We restrict here the angle   to 

positive values. This corresponds to the northern hemisphere 

of the full two-sphere. The full 2S would double count all 2-

electron configurations. Equation (4) shows clearly that a 
negative   leads to the same inertia. Here we employ this 

angle   as latitude on the hemisphere. For a complete 

description we need one further angle as azimuth. This may be 
chosen as 
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The mapping from the hemisphere to the body-fixed frame 

reads [1] 
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with 2
3

1
  and 2

3
2

  . These and similar 

hypersherical coordinates have been described elsewhere [2]; 
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they have been used in the context of several three-body 
problems [3]. 

The Hamiltonian for a helium-like atom reads in the above 
introduced coordinates  
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where 2  generates rotations on the hemisphere and is given 
by: 
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The charge function ),( C  is given by 
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Reference [1] has constructed eigenfunctions and energy 

eigenvalues following a Born-Oppenheimer –method [1], [4]. 
We search at first a basis of angular functions at constant 
values of R, i.e. we solve the eigenvalue problem 
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The eigenvalues )(RU   may be regarded as ),( lnHee   

potentials, correlation taken into account. Their asymptotic 
behaviour reads: 
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In a second step energy eigenvalues are obtained by solving 

the radial equations 
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The total wave function has then the product form 

);,()(),,( RRFR    . This product form 

introduces an approximation. We have neglected non-
adiabatic coupling terms. 

Along the above lines many singly and doubly excited 
states have been accurately calculated [1]. The results compare 
favourably with other theoretical and with experimental data. 
However, for increasing excitation energy our results become 
less and less accurate. Near the threshold for double escape 
this description breaks even down. It is the purpose of this 
paper to repair this shortcoming. 

II. NEW DEVELOPMENT  
We believe that the above BO-like description needs an 

improvement The unusual quantity in this treatment is the 

operator 2 . It constitutes at small values of R a centrifugal 
barrier to avoid a collapse of the whole atom. Reference [1], 
however, has overlooked that this operator changes at larger 
R-values the Coulomb potentials. This circumstance is slightly 

hidden, but may be seen as follows.  

We multiply the lhs of (11) with a smooth test function 
 and integrate over the hemisphere H 
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and assume smoothness in the sense |||| 


 and || 
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may be bounded on H. Modern differential geometry, see e. g. 
[5] identifies 2 as a Cartan derivative of a vector field given 

by - 


. 
Stokes theorem [5] converts then the first integral in (14) 

into a line integral of this vector field 


along the 

boundary H of the hemisphere. That boundary is simply the 
equator located at 0 . The quantity under consideration 

(14) may therefore be rewritten as 
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This last step has neglected the gradient-gradient-coupling 

( ) ( )  
 

. The two integrals in (15) may be put into one 

single one with help of a delta function, i.e. we arrive at 
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This must hold for any smooth test function , we 
therefore conclude that the static potential should be replaced 
by: 
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The gradient on the hemisphere is given by: 
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which simplifies on the equator ( 0 ) to 
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The effective interaction within the three-body complex 

reads therefore; 
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Equation (20) is the main result of this section. We stress 

that the replacement (20) has emerged mainly from intuition 
rather than from a rigorous derivation. However, it appears 
plausible that it may repair the BO shortcoming observed in 
[1]. We will see in the next section that calculations performed 
using (20) compare favourably with high precision 
experimental data. However, this modification of the pure 
Coulomb potentials looks unusually, and requires some 
immediate comments. It constitutes a fictitious force and has 
nothing to do with electrostatics. In contrast to classical 
fictitious forces like centrifugal or Coriolis force our fictitious 
force is a pure quantum effect and emerges from the 
diffraction of an electron wave from a three-body potential 

surface. The derivative term 
 constitutes except for an 

imaginary factor of i the momentum conjugate to the radial 
correlation coordinate  . We expect therefore that (20) 

disturbs the shell structure of the atom, or even destroys the 
shells. Closely related to the shell structure is the Pauli 
principle. Electron exchange is described in our coordinates by 
the replacement   2 , all other coordinates unchanged. 

The odd derivative term 


prevents singlet and triplet 

channels. This, however, is not in contradiction to the 
observation of lower resonances and to other standard 
theoretical work. We remark that the BO method, see (11), 
calculates standing wave solutions in two dimensions. These 
channel wave functions are equal to zero on the equator, 
similar like the transverse elongation of a vibrating membrane 
on the boundary. The fictitious force does therefore not 
contribute. This argument applies to the ground channel and to 
lower excited channels where resonances may be regarded as 
bound states in a continuum. The situation, however, changes 
drastically at extremely high double excitation, a largely 
unknown spectral region so far, where the improved channel 
equation 
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calculates now travelling waves describing  Hee scattering. 
As long as incoming and outgoing waves emerge from the 
same potential we fall back to shell structure and Pauli 
principle because the travelling waves can be combined to 
standing waves. Otherwise, we arrive at an unexpected 
spontaneous exchange symmetry and time reversal 
symmetry breaking. It is astonishing that a simple system like 
the He-atom shows such phenomena. We remark also that (20) 
is not Hermitian. Eigenvalues of (21) are therefore not 
necessarily real. The following example, the equator channel 
will demonstrate this phenomenon. The imaginary parts of the 
potential eigenvalues may be different for incoming and 
outgoing waves. Complex eigenvalues are not astonishing. An 
alterrnative treatment based on a rotation in phase space also 
led to complex eigenvalues [6]. 

III. EQUATOR CHANNEL 
The fictitious force becomes most important at extreme 

double excitation, i.e. near the threshold of double escape. 
 Hee scattering occurs then mostly near the equator. The 

equator contains all two-particle coincidence configurations, 
but also the very important Wannier point where the electrons 
are at equal distances and in opposite directions from the 
nucleus. In the neighbourhood of this point we now solve 
exactly the modified channel equation (21). To this end we use 
a Taylor expansion of the function ),( C  
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with the coefficients 
 

2

14
0




Z
C  ,

2

1
1 C ,

2

112
2




Z
C               (23) 

 
The new channel equation reduces near the Wannier point 

to: 
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Equation (24) can be solved by separation. To this end, we 

put: 
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 and start with the normalized portion 

)exp();( 2 bbRg  . This normalization is approximate. 
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result. Then we find 
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trivial. A convenient starting point reads 
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We average (24) over ψ, substitute (26) into (24) and 
calculate the parameters σ and τ. Thus, we arrive at  
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The plus sign in (26) describes an outgoing wave along the 

antioscillator coordinate φ, whereas the minus sign stands for 
an incoming wave. Therefore, we find two complex conjugate 
potentials given by 
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Equation (28) consists of a centrifugal barrier plus an 

attractive Coulomb potential for the electron pair as a whole 
plus a complex contribution stemming from the potential ridge 
curvature. The imaginary part occurs if and only if there is an 
antioscillator portion at the saddle point. Equation (28) shows 
clearly Im 0U  occurs only if the potential curvature 

02 C . This is an exact result within this framework. 

The zero-energy radial function may be represented also by 
a phase. To this end we write 
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with the ansatz  
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We find for large R (up to the power 2
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B may be obtained from the relation  21
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valid for 8
1|| A . Obviously the quantity B depends on the 

sign of A, and is therefore different for incoming and outgoing 
flux along R. 

We treat at first the outgoing wave, i.e. we put 

08CAout  , and arrive at 
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must assign one of the two waves along φ to the outgoing R-

flux. The above value outB  produces a factor of 
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  to the radial wave function, with 
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Near the threshold for double escape the radial wave 
function depends only through the combination KR with 

||2 EK  on the energy. The ionization cross section would 

therefore show the behaviour 0 E . The upper sign is 

entirely unrealistic, because this predicts a singular 

threshold cross section. Actually the cross section shows a 

power behaviour like  E , see [7] and [8]. We stress, 

however, that our 0  is not identical to Wannier’s μ because 

we employ here an adiabatic quantum approach whereas 
Wannier has an exact classical solution. Nevertheless, the 
experiment selects here the outgoing φ-wave to be combined 
with the outgoing R-wave. Moreover, this choice correctly 
predicts a cusp in the excitation cross section as observed in 
[8]. With this ssignment we conclude that the incoming φ-
wave combines with the incoming R-wave. This incoming 

wave shows then an amplification factor 0R valid for 
decreasing R-values. 

The results of this § may be summarized s follows. Near 
threshold for double escape we find two solutions. One 

incoming wave describing He  or  Hee  scattering. This 
solution corresponds to Wannier’s [7] converging trajectory, 
i.e. due to the fictitious force the incoming wave front is 
turned towards to the top of the potential ridge.. The electrons 
move then in opposite direction and equal distance from the 
nucleus. Apparently in this mode of motion the electrons 
attract each other. Electron pairs with that property are usually 
referred to as a Cooper pair [9]. A centrifugal barrier avoids 
the collapse of the whole complex. The pair is reflected at this 
barrier sphere and performs now an outgoing wave. The 
fictitious force is now repulsive. The electrons leave the ridge 
and the Cooper pair decays. This motion corresponds to 
Wannier’s diverging solution. From this viewpoint electron 
impact ionization near threshold may be regarded as decay of 
a Cooper pair. Slightly below threshold, however, the 
expanding complex experiences an outer turning surface given 

by the potential component R
C0 . Reflection there transforms 

the outgoing wave again into an incoming one which blows up 
the lifetime of the Cooper pair. In contrast to a Fano resonance 
profile [10] the bare Cooper resonance profile reads simply 

0|| 0
 EE   where E0 is the ionization threshold. 

So far, we have treated only S-states corresponding to zero 
angular momentum. The important equator channel remains 
however unchanged for rotating atoms. In our coordinates, 
there occurs a rotation-vibration-coupling like in molecules. 
This coupling occurs in the kinetic energy and is here given by 
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 2
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see (6) of [1]. Here   is the rotation angle around the body-

fixed z-axis. Equation (32) shows clearly the this coupling 
disappears on the equator 0 . 
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IV. GEDANKEN EXPERIMENT  
Let us here consider a linear chain of atoms, all in high 

Rydberg states. We hit now one atom by a slow electron. This 
electron is attracted by this Rydberg electron due to the 
fictitious force, and forms Cooper pair. After reflection of the 
pair at the inner turning sphere the pair decays due to the 
repulsive fictitious force. The pair leaves the potential ridge, 
and one electron escapes. During the decay it experiences the 
repulsive fictitious force. However, as soon as it approaches 
the next neighbour atom the electron moves in the incoming 
wave mode, and the e-e interaction becomes attractive. Thus a 
new Cooper pair is born. This alternating sequence of 
production and decay of Cooper pairs may occur through the 
whole chain. The macroscopic observer will see one Cooper 
pair travelling along the chain. 

V. SUMMARY 

The structure of resonance spectra close to an ionization 
threshold has been a mystery for a long time. A naïve 
consideration might expect infinity of double Rydberg states, 
so called planetary states where both electrons move on 
circular orbits. This picture, however, is oversimplified. We 
have shown that these double Rydberg states are suppressed 
by a novel fictitious force. This fictitious force has only little 
influence on bound states and lower resonances which may be 
regarded as bound states in a continuum. At increasing 
excitation energy, however, the fictitious force becomes more 
and more important, and leads to unexpected effects. We have 
shown that in this upper part of the resonance spectrum the 
exchange symmetry is spontaneously broken i.e. the total spin 
is not conserved, and therefore the shell-model including the 
Pauli principle is violated. Moreover, e-He+ and e-H(nl) 
scattering violate time reversal symmetry. At threshold for 
double escape we discover the formation of a Cooper pair. 
This manifests itself in slow electron scattering from a 
Rydberg state. In the incoming wave mode, the two electrons 
attract themselves due to the fictitious force. After reflection 
on an inner turning sphere this force becomes repulsive in the 
outgoing wave, and the pair decays. For the Cooper pair we 
find modified time reversal symmetry. The Cooper wave 
function carries an index 

0  depending on the potential 

surface curvature. Time reversal is then provided by complex 
conjugation as usual but combined with the replacement 

00   ,  

 

T  );,,( 0R *);,,( 0  R         (33)                                        
 

Only in the absence of the potential ridge, i.e. for 00  , 

relation (29) reduces to the standard symmetry T *  
relation. 

We think that the atomic process presented here occurs also 
in solids. A Gedanken experiment has shown how one Cooper 
pair can travel through a one-dimensional lattice. 

VI. OUTLOOK 

Finally, we remark that the unusual observations presented 
here are not artefacts of 2-electron atoms. They must occur in 
all atoms and molecules because there exist potential ridges 
although in higher dimensions. For instance, for three highly 
excited electrons we expect Cooper triples with the geometry 
of a breathing equilateral triangle, one electron in each corner 
[11]. 
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