
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

160

GPU-Accelerated Triangle Mesh Simplification
Using Parallel Vertex Removal

Thomas Odaker, Dieter Kranzlmueller, Jens Volkert

Abstract—We present an approach to triangle mesh simplification
designed to be executed on the GPU. We use a quadric error metric
to calculate an error value for each vertex of the mesh and order all
vertices based on this value. This step is followed by the parallel
removal of a number of vertices with the lowest calculated error
values. To allow for the parallel removal of multiple vertices we use
a set of per-vertex boundaries that prevent mesh foldovers even when
simplification operations are performed on neighbouring vertices. We
execute multiple iterations of the calculation of the vertex errors,
ordering of the error values and removal of vertices until either a
desired number of vertices remains in the mesh or a minimum error
value is reached. This parallel approach is used to speed up the
simplification process while maintaining mesh topology and avoiding
foldovers at every step of the simplification.

Keywords—Computer graphics, half edge collapse, mesh
simplification, precomputed simplification, topology preserving.

I. INTRODUCTION

S IMPLIFICATION of meshes has been a well established
research area for many decades. Reducing the complexity

of meshes and reducing the triangle count to lessen the
performance needed for rendering is still an important factor
even considering the computational power of today’s GPUs.
A wide variety of algorithms has been devised to create
a representation of a triangle mesh that contains less data
than the original. The different approaches vary in terms of
performance and quality of the resulting mesh. While some are
designed to create a simplification that resembles the original
mesh as closely as possible, others mainly provide short
processing times while paying less attention to the quality of
the resulting mesh. We present an algorithm that is designed
to create an approximation of a triangle mesh. Our goal is
to provide a parallel algorithm that can be executed on a
GPU. This results in reduced processing times and can provide
a significant speed up compared to previous algorithms.
Despite the GPU-accelerated approach, our algorithm focuses
on overall quality rather than real-time execution.

II. RELATED WORK

Ever since the idea of mesh simplification has first been
presented in [1], various approaches have been described
that aim to reduce the complexity of a triangle mesh. A
simplification algorithm usually relies on a simplification
operator that is applied to a triangle mesh and takes care of
the removal of either vertices or primitives.

T. Odaker and D. Kranzlmueller are with Ludwig-Maximilians Universitaet
Muenchen, Germany (e-mail: odaker@a1.net, kranzlmueller@ifi.lmu.de).

J. Volkert is with Johannes Kepler University Linz, Austria (e-mail:
jv@gup.jku.at)

The vertex pair collapse is a simplification operator that
replaces two vertices of a mesh with a single one. The vertices
are not required to be connected by an edge. This operator
can close holes in the mesh and merge multiple surfaces. An
example for the usage of this operator can be found in [11]. A
quadric error metric is used to compute which pair of vertices
to collapse and to determine a position for the new vertex that
minimizes the changes to the mesh caused by the operation.
The removal of vertices is iteratively repeated until a target
number of remaining points is reached. Another simplification
operator is the cell collapse presented in [2]. A number of cells
is superimposed over the mesh and all vertices within a cell are
collapsed into a single vertex. The number of cells is used to
control the quality of the simplified mesh. While this operator
can be used to compute a coarse mesh with fast processing
times, the overall quality of the result is usually inferior to
other operators. Several variations to cell creation and shape
have been proposed to improve the quality of the simplification
(e.g. [3], [4]). A parallel implementation of this approach that
makes use of a GPU to accelerate the computation of the
simplified mesh has been presented in [8].

The idea of the edge collapse is described in [6]. This
operator replaces an edge of a triangle mesh with a single
vertex, removing a vertex, an edge and one or two triangles
from the mesh. Usually an error metric is chosen to assign
an error value to each vertex or edge. Then the edge with the
lowest error value is selected and collapsed. This process is
iteratively repeated until a desired simplification is reached.
The half edge collapse is a more specialised form of the edge
collapse. It replaces an edge with one of its endpoints and does
not allow the replacement position to be chosen freely. The
edge collapse has the disadvantage that care has to be taken
how an edge is to be collapsed. Some edge collapses can create
mesh foldovers which have to be avoided (example in Fig. 1)
[10]. A mesh foldover is usually created if the normal of a
triangle that is manipulated by a collapse is rotated by more
than 90 degrees.

One algorithm that relies on edge collapses is progressive
meshes [9]. Here the executed simplification operations are
stored in a data structure. A mesh is represented by its
simplified version and this datastructure. The inverse operation
to the edge collapse, the vertex split - which replaces a vertex
with an edge - can then be executed until a desired grade
of detail is reached. The data structure for this approach
can be adapted to allow execution on a GPU [7] [12]. The
approach in [13] also uses the edge collapse and tries to
speed up iterative mesh simplification using edge collapses by
executing multiple collapses in parallel, taking advantage of a
GPU-accelerated implementation. In order to avoid foldovers



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

161

(a) (b)
Fig. 1 Mesh foldover example: mesh before (a) and after (b) the collapse

that caused a foldover

a number of independent areas of the mesh is determined and
an edge collapse executed in each area. This can achieve a
significant speed up over a simpler, iterative solution.

The idea of vertex removal is presented in [5]. Here a vertex
is chosen and removed from the mesh along with all edges and
triangles that contain it. The resulting hole in the mesh is then
triangulated. Removal of vertices and triangulation of holes is
repeated until the desired simplification is created.

In [14], we presented our approach to mesh simplification.
We described a parallel approach based on the half edge
collapse that uses a set of per-vertex boundaries to allow
parallel execution of half edge collapses while avoiding mesh
foldovers from the perspective of the camera. [14] was
mainly designed for very fast processing times and made
compromises in terms of quality to achieve this speed up. We
now present a modification of this approach that is designed
for precomputing a simplified mesh. We modify our approach
to work without the camera data while still avoiding foldovers
and allowing a parallel execution. In addition we adapt how
vertices are selected for removal to increase the quality of the
coarse mesh.

III. ALGORITHM OVERVIEW

Our approach presented in [14] chose a number of vertices
for removal upfront and then processed them in multiple
iterative steps while allowing vertices marked for removal to
be reclassified based on changes done to the mesh. In order
to improve the quality of the coarse mesh we divert from
this approach for the simplification method presented in this
paper. We calculate a per-vertex error, then execute a step
which removes N vertices with the lowest error in parallel.
This is followed by the recomputation of the vertex error for
all vertices remaining in the mesh. We execute the removal of a
vertex by performing a half edge collapse. Since N vertices are
to be removed in parallel, we define only edges that connect
a vertex selected for removal to a neighbour that is not to be
removed as a valid half edge collapse that may be executed.

The algorithm presented in this paper iteratively executes
three steps (see Fig. 2): Computation of a vertex error for
each vertex (1), sorting of all vertices according to the
vertex errors (2) and removal of N vertices with the lowest
vertex error (3). These three steps are repeated until either
a number of remaining vertices/triangles is reached or the
minimal calculated vertex error reaches a threshold. We use

Vertex error computation 1

Vertex sorting2

Parallel removal3

Fig. 2 Algorithm steps

a modified version of the per-vertex boundaries presented in
[14] to avoid foldovers in the resulting mesh. The original
boundaries were created using the camera position which
is not applicable to a simplification created in an off line
preprocess. The application of the boundaries enables us to
use a GPU-accelerated implementation of this algorithm which
greatly speeds up the execution of the simplification.

IV. VERTEX ERROR CALCULATION

The vertex error assigned to each vertex is used to determine
which vertices will be removed in each iteration. We rely on
the usage of the quadric error metric (QEM) presented in [11].
While the QEM originally uses the vertex pair collapse and
not the (half) edge collapse, the authors point out that only
choosing vertex pairs which are connected by an edge is an
intended usage for their metric. The algorithm for the QEM
creates a set of vertex pairs, orders them according to the
error metric and executes the pair collapse with the lowest
error. We have to modify this approach since - due to the
per-vertex boundaries - we do not operate on vertex pairs
but on vertices. Instead of selecting vertex pairs we analyse
all vertices with regards to their neighbours. Every vertex
is analysed individually. Each edge that connects a vertex
V to one of its neighbours is a possible half edge collapse
for the removal of V. The vertex error should represent the
error caused by removing V and replacing it with one of its
neighbours. The algorithm for the QEM always executes the
collapse with the lowest error. We calculate the error value
e(E) for an edge E that connects V to a neighbour V’. The
value e(E) is the cost of replacing E with V’ according to the
metric in [11]. Since our algorithm removes N vertices with
the lowest assigned error value we would ideally compute the
value e(E) for each edge that contains a vertex V and use the
minimum of these error values as the vertex error e(V). This
causes two problems: First, our approach only allows collapses
on edges between vertices that are supposed to be removed
and those ones that remain unchanged in the current removal
step. Given that the edge E with the lowest error e(E) connects
the vertices V and V’, the collapse is only possible if V’ is
not supposed to be removed at the same time, which cannot
be guaranteed. Second, the per-vertex boundaries may block
the collapse with the lowest error and force us to perform one
with a high error according to the QEM instead. To avoid these
issues we do not assign the minimum error of all the edges



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

162

V1

V2

V3

V4

V1V3
V2V4

V4/2

V4/2

V3/1

V3/1

V5

V5

V5

V5

(a) (b) (c)
Fig. 3 Parallel removal of vertices: original mesh (a), individual half edge

collapses (b) and parallel collapses (c)

but instead use the average error of all edges that contain a
vertex V.

After all vertices have been assigned a vertex error, we
perform a sort pass that orders the vertices according to their
errors. The goal is to select the N vertices with the lowest
vertex error and process them in the following removal step.

V. PARALLEL VERTEX REMOVAL

This step removes N vertices in parallel. Each vertex has at
least two edges that connect it to neighbouring vertices. The
removal step tries to select an edge for each vertex chosen
for removal and executes a half edge collapse on it. It is
however not guaranteed that a possible half edge collapse
can be found for each vertex. By our definition a half edge
collapse may only be performed on an edge that connects
a vertex to be removed to a neighbour that is to remain
unchanged in the current removal step. If all neighbours of
a vertex selected for removal are currently also marked to be
removed, no valid edge for a half edge collapse can be found
and the vertex cannot be removed. This case is simply handled
by not executing any operation on the vertex in the current
removal step. It may be removed in a future iteration however.
The vertex removal step is executed per vertex. It uses our
per-vertex boundaries to eliminate all half edge collapses that
could cause a mesh foldover and then selects one of the
remaining ones for each vertex to be removed. The need for
the boundaries is created by the parallel nature of the removal
step. We define a mesh foldover to occur when the normal
of a triangle manipulated by a collapse rotates by more than
90 degrees. While an iterative approach may simply check for
rotations of triangle normals, this is not possible when two
neighbouring vertices are subjected to a half edge collapse at
the same time. Fig. 3 shows an example for this situation.
While the two half edge collapses executed individually are
valid, the parallel execution is not.

Our per-vertex boundaries presented in [14] were designed
for view-dependent mesh simplification. For that purpose, they
were constructed using the camera position to guarantee that
no foldover could occur form the perspective of the camera.
For the computation presented in this paper, however, we
do not have a camera position available and therefore need
to alter the boundary construction. Boundary construction

Vr
V1

V2 nt

p

Fig. 4 Plane for boundary 1

differs depending on how many vertices selected for removal
a triangle is made up of. For each vertex to be removed
the boundaries B(V) are a set of planes. Each triangle that
contains a vertex adds one or two planes to this set. For
boundary testing all triangles containing a vertex V have to
be found first. Then the number of removal candidates in each
triangle is determined, the appropriate boundary planes are
constructed and added to per-vertex boundary B(V). Any edge
that has been selected as a possible half edge collapse is tested
against all planes in B(V). Testing is done by checking if an
intersection exists between the edge and any plane in B(V).
If one can be found, the collapse may cause a foldover and
is disregarded. Only half edge collapses that do not have an
intersection with any plane in B(V) are considered valid and
can safely be executed.

A. Boundary Construction

Our approach used the vector between the camera position
and a point on the triangle to construct the boundary planes.
For the computation, here we substitute this vector with
the triangle normal since no camera position is available.
It is however not possible to use the triangle normal of an
intermediate mesh created by one or more removal steps. Since
the triangle normal can be changed by half edge collapses,
using the triangle normal of the intermediate mesh could allow
further rotation of the normal with each iteration. This could
effectively rotate it by more than 90 degrees compared to
the triangle of the original mesh which may cause a mesh
foldover. To avoid this issue the triangle normal of the triangle
in the original mesh is stored and maintained for boundary
computation, even when the triangle is modified by one or
more of its vertices being removed by a half edge collapse.
As mentioned earlier, boundary construction differs, depending
on how many vertices of a triangle are marked for removal.

1) Boundary 1: In the first case, a single vertex is
selected for removal in the triangle (the vertex we construct
the boundary for). Here only a single plane needs to be
constructed and added to the set of per-vertex boundaries.
Given the triangle is constructed from vertices V1, V2 and
the vertex selected for removal Vr with the triangle normal
of the unmodified triangle in the original mesh being nt, the
boundary plane p is constructed using the points V1, V2 and
V1 + nt (example in Fig. 4).

2) Boundary 2: Boundary 2 is used when the triangle
contains two vertices marked for removal. Here two planes
are constructed. For a triangle consisting of V and the vertices
marked for removal Vr1 and Vr2, the plane p1 is constructed
using the points V , V + (Vr2 − Vr1) and V + nt. The second
plane p2 contains the points V , (Vr1 +Vr2) ∗ 0.5 and V +nt.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

163

Vr1

Vr2

V

p1

p2

Fig. 5 Planes for boundary 2 (top view)

Vr1

Vr2

Vr3

p1

p2S

Fig. 6 Planes for boundary 3 (top view)

Fig. 5 shows an example for the planes looking down onto the
triangle.

Unlike boundary 1, these boundary planes can block valid
combinations of edge collapses. While this can potentially
limit the simplification, it is an accepted trade off to increase
the parallelism of the execution and avoid any communication
between the simplification operations.

3) Boundary 3: The third and last boundary is used when
all three vertices of a triangle are marked for removal. Here
two planes are constructed for each vertex using the centroid
S.
For a triangle Vr1, Vr2, Vr3 plane p1 for vertex Vr1 contains
the points S, S + nt and S + (Vr2 − Vr1). Plane p2 for Vr1

contains S, S + nt and S + (Vr3 − Vr1). Fig. 6 shows an
example for the planes looking down onto the triangle.

B. Half Edge Collapse Selection

After boundary testing is completed each vertex selected for
removal has a list of valid half edge collapses that would not
cause a foldover. One of those edges needs to be selected and
removed from the mesh. We rely on the use of the quadric
error metric (QEM, [11]) that has already been chosen for the
calculation of the vertex error. Each edge is assigned an error
value according to the QEM. Given that an edge E is made
up of the vertices Vr and V ′ where Vr is selected for removal,
the replacement position for the edge is V ′. We construct the
matrix according to the QEM and calculate the error using V ′

as the replacement position. The valid edge with the lowest
value is chosen and the half edge collapse executed which
results in the removal of Vr from the mesh.

VI. IMPLEMENTATION

We have implemented our algorithm using Nvidia CUDA
to accelerate the execution by taking advantage of the GPU.
Our algorithm - especially the per-vertex boundaries - is
designed to isolate half edge collapses and avoid all need for
communication between individual operations which makes
it well suited for execution on a GPU. To speed up the

Vertex error computation 1

Vertex sorting2

Parallel removal3

Neighbour list computation 0

Fig. 7 Implemented algorithm steps

computation we maintain a list of neighbours for each vertex.
This is needed for the vertex error calculation as well as the
boundary computation during the parallel removal step. It does
however have the disadvantage that the neighbour list needs to
be updated after each parallel removal step to take executed
half edge collapses into account and to make sure that the
correct neighbours can be selected. We have to modify the
algorithm steps to include the computation of the neighbour
list (Fig. 7). The computation of the neighbour list can be
reduced by only updating it for vertices that were neighbours
of vertices subjected to a half edge collapse in the previous
parallel removal step to minimize the necessary runtime for
the operation.

In step 1 (Fig. 7) ,we write a list of vertex errors and then
use it to sort all vertices remaining in the mesh. For this
operation, the Nvidia Thrust library is used which offers GPU
accelerated sorting by key values. The algorithm operates on
a list of vertices and indices. Whenever a vertex is removed
from the mesh, its replacement position is stored. This value
is then used to update the index list, which serves as a base for
the computation of the neighbour list. After the simplification
process has been completed, we can use the resulting index
list of the last iteration to build the triangle indices for the
coarse mesh the algorithm created.

VII. RESULTS

We used our implementation to test the algorithm with a
Nvidia Geforce GTX 670 GPU with 1344 cores. Since we are
applying an algorithm that removes up to N vertices in a single
pass, we have to run several iterations until the simplification
process is completed. We observed that the number N is crucial
to the processing time for the simplification as well as the
overall quality of the coarse mesh. A high number of vertices
being removed in each pass can greatly reduce the number of
necessary iterations and therefore reduce the overall runtime
of the simplification. On the other hand, however, the quadric
error metric used to select which vertices are removed is
not able to predict parallel operations. While collapsing one
edge at a time always chooses the ”optimal” edge, this is
not possible for the parallel approach. The more vertices are
removed in parallel, the greater the deviation from this optimal
sequence may occur.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

164

TABLE I
VERTICES AND TRIANGLES OF THE ORIGINAL MODELS

vertices triangles
Stanford Bunny 35 947 69 451
Armadillo 172 974 345 944
Dragon 437 645 871 414
Happy Buddha 543 652 1 087 716

TABLE II
SIMPLIFICATION TIMES AND NUMBER OF ITERATIONS FOR ALL MODELS

AND TEST CASES

50% 25% 5% 1%
Stanford Bunny
time(ms) 27.9 42.7 57.2 74.5
iterations 4 7 12 18
Armadillo
time(ms) 358.7 496.7 590.1 598.8
iterations 33 49 63 66
Dragon
time(ms) 856 1237 1513 1567
iterations 54 81 104 111
Happy Buddha
time(ms) 1101 1712 2088 2129
iterations 68 102 130 136

The test cases were executed using various numbers of
vertices being removed in each pass and the overall results
presented here being averages to represent the performance
of the algorithm. We used four different models to test our
approach that were taken from the Stanford 3D Scanning
Repository: ”Stanford Bunny”, ”Armadillo”, ”Dragon” and
”Happy Buddha”. The numbers of vertices and triangles for
these models are shown in Table I.

We used all four models to run several test cases. We set
various targets for the simplification using a target number of
vertices expressed by a percentage of the number of vertices
of the original model. For these test cases we measured the
overall runtime until the simplification process was completed
as well as the number of iterations necessary to compute the
coarse mesh. The percentage targets for the simplification were
set at 50%, 25%, 5% and 1% of the vertices of the original
mesh. Figs. 9 and 10 show the resulting meshes of all test
cases for the models ”Dragon” and ”Happy Buddha”. These
are the two meshes with the highest polygon count in our
tests. The original meshes are not shown in this comparison,
the left images show the 50% target with decreasing number
of vertices towards the right. The rightmost image (the image
in the second line for the dragon) shows the 1% target.

Table II shows the results for all test cases and all models
that were measured using our implementation. It should be
noted that these results are averages of several tests using a
different number of vertices being removed in each iteration. In
general we noticed that a higher number N reduces the number
of iterations and the processing time, while having an impact
on the quality of the resulting mesh. Some unfavourable
triangles (e.g. long and narrow triangles) can occur due to the
parallel execution being processed in an isolated fashion and
not taking the chosen half edge collapse for a neighbouring
vertex into account. These artefacts are however reduced when
lowering parallelism. The best trade off between speed and
overall quality was achieved when starting the simplification

(a) (b)
Fig. 8 Coarse mesh comparison: 5% target with N=1344 (a) and N=5376

(b) vertices removed in each iteration

with a high number of vertices being removed and reducing
this number in later iterations to avoid these artefacts in the
final coarse mesh. Fig. 8 shows a comparison between two
simplifications of the Stanford Bunny. Both were created using
the 5% target and a fixed number N of removed vertices in
each iteration. On the left the result for N=1344 is shown.
On the right the simplification was created using N=5376.
The simplification using N=1344 took 83ms to be completed,
while the result for N=5376 was computed in 51ms. There
are some rougher edges visible on the coarse mesh computed
using higher parallelism, especially around the paws of the
Stanford Bunny, but also along the tail.

A more detailed comparison of the tail of the Stanford
Bunny is shown in Fig. 11. Here the left side shows the
simplification created using less parallelism again. A smoother
triangulation is visible compared to the result on the right.

VIII. COMPARISON TO OTHER APPROACHES

We compare the results of our algorithm to other
approaches. We limit this comparison to simplifications
created using the edge collapse to achieve valuable results. Our
main goal was to see the difference in quality of the overall
mesh in contrast to an iterative simplification as well as the
speed up compared to iterative and other parallel approaches.

A. Iterative Simplification

We compared our approach to an iterative simplification
using Meshlab to simplify the ”Dragon” mesh with a target of
50% and 5%. We did not measure the simplification time for
the iterative approach as Meshlab already takes over 5 seconds
for the 50% target.

Fig. 12 shows the comparison of the two targets. We can
see some loss of quality in the comparison in the 5% target,
but very little visible difference in the 50% target. The quality
in the 5% target for our algorithm could be further increased
by removing less vertices in parallel in the later iterations.

B. Comparison to Parallel Approaches

The algorithm presented in [13] has a similar idea as
our approach. Instead of allowing removal of neighbouring
vertices, it searches independent areas in which half edge
collapses are executed. This results in the same issues as we
found with our algorithm: an increase in parallelism causes
a decrease of overall quality of the resulting coarse mesh



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

165

(a) (b) (c)

(d)
Fig. 9 Meshes created for the model ”Dragon” by the simplification for 50% (a), 25% (b), 5% (c) and 1% (d) targets. See Table II for runtimes.

(a) (b) (c) (d)
Fig. 10 Meshes created for the model ”Happy Buddha” by the simplification for 50% (a), 25% (b), 5% (c) and 1% (d) targets. See Table II for runtimes.

(a) (b)
Fig. 11 Detailed coarse mesh comparison of tail: 5% target, N=1344 (a) and

N=5376 (b) vertices removed in each iteration

when compared to a strictly iterative simplification [13]. While
[13] achieves a significant speedup compared to the iterative
simplification, the algorithm is significantly slower than our
approach. The model ”Gargoyle” used for benchmarks in
[13] consists of 450 000 vertices. Computing a simplification
with a target of 90% already takes over 850 ms using the
approach from [13], while the 5% target is computed in almost
5.7 seconds. We use the Dragon model from our tests with
about 440 000 vertices to compare these results. Our approach

(a) (b)

(c) (d)
Fig. 12 Comparison: Our approach (a, c) and iterative simplification (b, d)

with 50% (a, b) and 5% (c, d) target



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

166

creates the 50% target in 856 ms while computing the 5%
target in under 1.6 seconds which shows a significant speedup
over the algorithm presented in [13].

IX. CONCLUSION

We have devised an algorithm for computing a mesh
simplification that can make use of the parallel processing
power of the GPU to reduce processing times. Our approach
is considerably quicker than previous work while maintaining
good overall quality of the resulting meshes, but is not
designed for real-time simplification. The number of vertices
removed in each pass of the process has been observed to be
a key factor to managing the trade off between the processing
time and the quality of the algorithm. Even with a relatively
high number of parallel removals we observed a good quality
result that is comparable to previous approaches while gaining
a significant speed up.

X. FUTURE WORK

Since the most important factor for this algorithm proved to
be the number of vertices reduced in each iteration, this factor
should be subject to further development. The highest quality
for the coarse mesh was achieved with a low parallelism,
which had an impact on processing times. The algorithm can
be improved by dynamically choosing the number of vertices
to remove at each iteration to increase quality with minimal
impact on processing time. Overall a lower number should be
used in later iterations to increase quality. On the other hand
a threshold for the error value of removed vertices might be
applied to further refine the selection. This might also lead
to usage of a hybrid approach, where the parallel algorithm
presented here is used to quickly remove a large number
of triangles whilst then switching to a CPU implementation
for the latter iterations and reduce the overhead of the GPU
implementation whilst further improving the quality of the
coarse mesh. Another factor that has potential to greatly
increase overall quality of the coarse mesh is the use of feature
extraction. This has to be added to the error metric used to
choose the vertices to be removed and the executed half edge
collapses to better conserve defining features of the original
model.

REFERENCES

[1] Clark, J. H. Hierarchical geometric models for visible surface
algorithms, Com. of ACM 19, No. 10, pp.547-554, 1976

[2] Rossignac, J., and Borrell, P. Multi-resolution 3D Approximations for
Rendering Complex Scenes, Modeling of Computer Graphics: Methods
and Applications, pp.455-465, 1992

[3] Schaefer, S., and Warren., J. Adaptive vertex clustering using octrees,
Proceedings of SIAM Geometric Design and Computing 2003, Vol. 2,
pp.491-500, 2003

[4] Low, K.-L., and Tan, T., S., Model simplification using vertex-clustering,
SI3D Proceedings 1997, pp.75-ff., 1997

[5] Schroeder, W., J., Zarge, J., A., and Lorensen, W., E. Decimation of
triangle meshes, ACM SIGGRAPH Computer Graphics Vol. 26, No. 2,
pp.65-70, 1992

[6] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., A., and Stuetzle,
W. Mesh optimization, ACM SIGGRAPH Proceedings 1993, pp.19-26,
1993

[7] Hu, L., Sander, P., V., and Hoppe, H. Parallel view-dependent refinemnet
of progressive meshes, I3D 2009 Proceedings of the 2009 Symposium
on Interactive 3D Graphics and Games, pp.169-176, 2009

[8] DeCoro, C., and Tatarchuk, N. Real-time mesh simplification using the
GPU, I3D 2007 Proceedings of the 2007 Symposium on Interactive 3D
Graphics Vol. 2007, pp.161-166, 2007

[9] Hoppe, H. Progressive meshes, ACM SIGGRAPH 1996 Proceedings,
pp.99-108, 1996

[10] Xia, J., C., El-Sana, J., and Varshney, A. Adaptive real-time
level-of-detail-based rendering for polygonal models, IEEE Transactions
on Visualization and Computer Graphics Vol. 3, No. 2, pp.171-187, 1997

[11] Garland, M., and Heckbert, P., S. Surface simplification using quadric
error metrics, SIGGRAPH Proceedings 1997, pp.209-216, 1997

[12] Hu, L., Sander, P., and Hoppe, H. Parallel view-dependent level of detail
control, IEEE Transactions on Visualization and Computer Graphics Vol.
16, No. 5, pp.718-728, 2010

[13] Papageorgiou, A., and Platis, N. Triangular mesh simplification on the
GPU, The Visual Computer: International Journal of Computer Graphics
Vol. 31, Issue 2, pp.235-244, 2015

[14] Odaker, T., Kranzlmueller, D., Volkert, J. View-dependent Simplification
using Parallel Half Edge Collapses, WSCG 2015 Conference
Proceedings, pp.63-72, 2015


