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Evaluation of Residual Stresses in Human Face as a
Function of Growth
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Abstract—Growth and remodeling of biological structures have
gained lots of attention over the past decades. Determining the
response of living tissues to mechanical loads is necessary for a wide
range of developing fields such as prosthetics design or computer-
assisted surgical interventions. It is a well-known fact that biological
structures are never stress-free, even when externally unloaded. The
exact origin of these residual stresses is not clear, but theoretically,
growth is one of the main sources. Extracting body organ’s shapes
from medical imaging does not produce any information regarding
the existing residual stresses in that organ. The simplest cause of such
stresses is gravity since an organ grows under its influence from
birth. Ignoring such residual stresses might cause erroneous results in
numerical simulations. Accounting for residual stresses due to tissue
growth can improve the accuracy of mechanical analysis results. This
paper presents an original computational framework based on gradual
growth to determine the residual stresses due to growth. To illustrate
the method, we apply it to a finite element model of a healthy human
face reconstructed from medical images. The distribution of residual
stress in facial tissues is computed, which can overcome the effect of
gravity and maintain tissues firmness. Our assumption is that tissue
wrinkles caused by aging could be a consequence of decreasing
residual stress and thus not counteracting gravity. Taking into
account these stresses seems therefore extremely important in
maxillofacial surgery. It would indeed help surgeons to estimate
tissues changes after surgery.

Keywords—Finite element method, growth, residual stress, soft
tissue.

[.INTRODUCTION

ROWTH and remodeling are one of the main features of
living tissues. Within the growth mechanics, living
system can be formulated by mechanical phenomena and
continuum mechanics [1]. As shown by Fung’s experiments,
the biological tissues are not stress-free even when entirely
unloaded [2]-[4]. It is a well-known fact that the residual
stresses affect the distribution of stresses in tissues [5].
Chuong and Fung [3] showed that in the vessel walls, the
circumferential stress gradient is reduced due to the presence
of residual stresses. The exact origin of residual stresses in the
living tissues is not clear, but one of the main causes of these
stresses is tissue growth and remodeling.
In early past decades, modeling tissues growth and
computing the resulting residual stresses in the biological
structures has gained lots of attention. In the case of soft
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tissues (in contrast with hard tissues such as bony structures),
because of some complexity such as nonlinear behavior,
anisotropy and large deformations, fewer models have been
proposed. As a pioneering work on soft tissue growth,
Rodriguez et al. [1] proposed a continuum formulation of
volumetric growth. The authors defined the concept of
“fictitious configuration” with considering a virtual state
between  zero-stressed reference and the current
configurations. Holzapfel and Ogden [6] introduced a multi-
layer model of arterial tissue in which each layer is composed
of an isotropic matrix and two families of fibers that induce
the anisotropy. Instead of using fictitious configuration, they
assumed an open sector of artery as a stress-free reference
configuration which produces residual stresses when it is
closed. Among all works, Taber, Epstein and Maugin,
Lubarda and Hoger, Guillau and Ogden have contributed to
the understanding of tissues growth and the resulting residual
stresses [7]-[10]. Recently, experimental analyses showed that
the in-vivo stiffness of thin biological membranes like mitral
leaflet is different from its measured ex-vivo stiffness by up to
three orders of magnitude [11]. Rausch and Kuhl [11], using
the inverse finite element method, showed that the main
reason of this disagreement is the existing prestrain which
relates to the growth-induced residual stresses. Hence ignoring
the residual stresses and its effects may lead to erroneous
results [12].

In this paper, we have implemented the concept of fictitious
configuration for growth mechanics in order to determine the
constitutive formulation of growth in the tissues. However,
growth itself causes or changes the stress state in the tissues,
but growth under loading changes the equilibrium state of
stress. Hence determining the stresses due to growth requires
an iterative method. In this paper, we propose a gradual
growth method together with a loading-growth-unloading
procedure to estimate tissues residual stresses. The method is
applied to a model of healthy human facial tissues.

After a brief review of the growth continuum mechanics,
the gradual growth method to determine the growth multiplier
and the loading-growth-unloading procedure are presented. As
a simple verification, the performance and efficiency of the
proposed method are examined on a cantilever beam as an
illustrative example. The proposed method is then applied to a
finite element model of the human face. The residual stresses
due to isotropic growth under gravity are represented on that
face model.
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II.CONTINUUM MODELING OF GROWTH

A.Continuum Theory and Constitutive Formulation

Let X be the position vector of a material point in the
reference configuration By at time ty, and X its position vector
in the current configuration By at time t. Deformation from B,
to By is denoted by x = ®(X,t) and the deformation gradient
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Using multiplicative decomposition of the deformation

gradient, we introduce F, and g which are the elastic and
g

the growth deformation tensors respectively,

F=FF @)
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To model the behavior of soft tissue, we use a S-parameter
Mooney-Rivlin function as the energy strain potential with an
incompressible constraint which represents a nonlinear
isotropic hyperelastic material. Since only the elastic tensor

e

generates stress, we use it instead of total deformation gradient
F in expression of strain energy potential [13]
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Using further decomposition, we introduce the volumetric
and isochoric parts of elastic strain energy potential
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This leads to Flory’s decomposition of elastic tensor
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Therefore, the isochoric part of elastic right Cauchy-Green
deformation tensor can be determined:
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Considering (3)-(6) for an isotropic material, we can
express the elastic strain energy function and its related
isochoric and volumetric parts as a function of the invariants
of the isochoric part of the elastic right Cauchy-Green
deformation tensor and Je the determinant of total elastic

tensor,
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and p is the Lagrange multiplier to enforce the

incompressibility constraint. Considered material constants are
presented in Table I [14].

TABLE 1
MOONEY-RIVLIN MATERIAL CONSTANTS USED IN THIS PAPER
C| Cz C3 C4 CS
2.5E+3 0 1.175E+3 0 0

To complete our continuum formulation, we introduce the
second Piola-Kirchhoff stress, the Cauchy stress, and the
fourth order elasticity tensor in (12)-(14) respectively,

a
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Because of limitation on space, the detailed derivations of
equations are not given here. For more detail, see [11] and
[13].

B.Growth Model

Although, the exact origin of residual stresses in biological
tissues 1is still not clear, it is a well-known fact that such
residual stresses are changed by growth. Fig. 1 shows the
various configurations based on the concept of fictitious
configuration and transformations, which are consequents of
multiplicative decomposition. It should be noted that
configuration B, is fictitious grown incompatible
configuration.
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Fig. 1 Different configurations and transformation based on
multiplicative decomposition of the deformation gradient

We use the isotropic growth law, as one of the most widely
used models in the literature. It is indeed the simplest form of
growth that can generate residual stress [13]. We thus
parameterize the growth tensor, Fg as a multiple of a growth

multiplier g by second order identity tensor I ,
g

F -0l (15
9 9

Growth is related to time by following the evolution law,

® :ltr(E) (16)
g e

where 7 is the time constant and g is the elastic Lagrangian
e
strain tensor, g — l(c —1)-
e 2

Based on (15) and (16), the elastic part of the deformation is
required to determine the growth and its related tensor g ;

however, g itself is computed following the growth as
e

F - FFg—l . Hence, an iterative method is necessary to compute

the growth factor ¢
g

III.COMPUTATIONAL MODELING OF GROWTH

The constitutive formulations presented in the previous
section are implemented in Ansys Mechanical APDL
(Ansys®, 2015) by using the ability of user defined material
(UMAT). To determine the residual stresses due to growth, we
propose a gradual growth method together with a loading-
growth-unloading protocol. Based on this, we first solve the
finite element model under external mechanical loading and
boundary condition. Then, under loading condition, growth is

applied by using the growth multipliergg . In each step, this

growth multiplier is increased to a maximum value with a
specified velocity. Finally, in the unloading step, the external
loads on the grown model are removed. The remained stresses
are thus supposed to represent the residual stresses due to
growth.

IV.VERIFICATION OF METHOD

In order to verify the presented method, we implemented it
on a cantilever beam with one fixed end. A 5-parameter
Mooney-Rivlin model was used for that beam. As concerns
boundary conditions, one end of the beam has been fixed. The
other end of the beam is subjected to a transverse force applied
perpendicularly to the longitudinal axis of the beam. After
solving and determining bending stresses, a gradual growth is
applied to the beam model. Finally, by removing the external
loads in an unloading step, only the residual stresses due to
growth remain in the beam. Fig. 3 shows the deformation of
the beam at the end each loading, growth, and unloading steps,
respectively.

As shown in Fig. 3 (c), there is an indelible deformation in
the beam due to growth, even when the model is entirely
unloaded.
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Fig. 3 Deformation of a beam at the end of loading (a), growth under loading (b) and unloading phases (c)
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Fig. 4 Von-Mises stress distribution

The Von-Mises stresses after the loading, growth and
unloading steps are shown in Fig. 4. By comparing Fig. 4 (a)
and (b), it can be inferred that the distribution of stress
becomes more uniform after the growth step with a reduction
of stress concentration; such a result is consistent with the
literature [S]. The computed residual stresses due to growth in
unloaded configuration are shown in Fig. 4 (c).

V.RESIDUAL STRESSES IN HUMAN FACE

A.Human Face

To model growth and to determine its related residual
stresses in the human face, the finite element model plotted in
Fig. 5 is used. This model is based on an 8 nodes hex-
dominant mesh representing the three layers of dermis and
sub-dermis tissues generated with 10162 elements and 10068
nodes [14].

Fig. 5 Meshed human face model
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As concerns boundary conditions, we assume that the inner
layer of facial tissue is attached to the skull and therefore fixed
in all directions.

B.Growth in Facial Tissue

There are different evolution laws in the literature.
Researchers have proposed various driving forces for growth.
Fiber stretches, Kirchhoff and Mandel stresses are some of
widely used forces [15], [16]. In order to focus on residual
stresses due to growth and not on the growth itself, we have
selected isotropic growth. In this regard, we have used the
trace of elastic strain tensor which is a reasonable assumption
in isotropic growth [13].

The loading-growth-unloading sequence was implemented
on the face model with a loading representing gravity. After

this loading step, growth was applied gradually to the
maximum value of @ =2 (Fig. 7) which seems reasonable
g

according to the literature [17], [18]. After removing the effect
of gravity, the residual stresses due to growth in the facial
tissue is then computed (Fig. 8).

Fig. 8 illustrates residual stress distribution while Figs. 6
and 7 show the stress distribution in non-grown and grown
mechanically loaded configuration respectively. As shown in
Fig. 7, the stress field has been made more uniform and
homogenous as a consequence of growth. Moreover, Fig. 6
illustrates that residual stresses are greater in near the eyes,
lips, and forehead.

Fig. 7 Von-Mises stress distribution in grown mechanically loaded configuration
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Fig. 8 Von-Mises stress distribution in grown mechanically unloaded configuration

VI.CONCLUSION

In this research, we proposed an approach to introduce and
to estimate the soft tissues residual stresses due to isotropic
growth. The results are promising since they seem to have a
good agreement with the literature.

For future works, a more complex growth law should
probably be used. In particular, to describe the material
behavior, transversely isotropic and anisotropic material
model will be considered. Validating the proposed method
using experimental data is another perspective of this work.
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