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 
Abstract—In this paper, we investigate the low-lying energy 

levels of the two-dimensional parabolic graphene quantum dots 
(GQDs) in the presence of topological defects with long range 
Coulomb impurity and subjected to an external uniform magnetic 
field. The low-lying energy levels of the system are obtained within 
the framework of the perturbation theory. We theoretically 
demonstrate that a valley splitting can be controlled by geometrical 
parameters of the graphene quantum dots and/or by tuning a uniform 
magnetic field, as well as topological defects. It is found that, for 
parabolic graphene dots, the valley splitting occurs due to the 
introduction of spatial confinement. The corresponding splitting is 
enhanced by the introduction of a uniform magnetic field and it 
increases by increasing the angle of the cone in subcritical regime.  
 

Keywords—Coulomb impurity, graphene cones, graphene 
quantum dots, topological defects.  

I. INTRODUCTION 

INCE the successfully experimental realization [1], [2] of 
graphene, a new research area [3], [4] developed in the 

field of condensed matter physics and material science. This 
material exhibits unusual physical properties, high crystal 
quality, and exotic Dirac-type spectrum which is described by 
the analogy with the relativistic Dirac equation [5], [6]. The 
low-energy dispersion of electrons in graphene is occurred 
near two unequivalent points in the Brillouin zone: ܭ and ܭ′ 
points [6], where a new pseudospin degree of freedom appears 
due to the two sublattices defining the honeycomb lattice of 
graphene. This area has attracted considerable attention by 
both experimental and theoretical condensed matter physicists 
due to its novel physical properties. In particular, GQDs have 
been extensively studied in the recent literature. It has been 
shown that their controllable various geometries and sizes 
make them potential candidates for the future electronic and 
optical devices [7]-[13]. 

As known, electrons can be described by a two-dimensional 
Dirac-Weyl equation and behave as massless chiral fermions. 
Due to this unique property, electrons in graphene cannot be 
efficiently confined within finite spatial areas and cannot be 
localized by time like confinement potentials. The 
confinement of electrons in graphene is not trivial due to the 
Klein’s paradox, which makes potential barriers transparent 
for normally incident quasi-particles. This problem has been 
studied in many theoretical investigations by using various 
confinement geometries within the different schemes [14]-
[36]. Another alternative approach to confine Dirac electrons 
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in graphene have been proposed in the presence of 
inhomogeneous magnetic fields [16], [25]. In addition, there 
have been extensive studies on the electronic properties of the 
topological defects in graphene, i.e., graphene cones [37]-[39]. 
These structures can be realized by distortions of graphene 
sheets by introducing various kinds of defects. These defects 
induce lattice distortions that can be generally classified in two 
types of dislocations and disclinations. Dislocations type 
disorders arise from the translational lattice incompatibility of 
the crystal lattice. In the presence of dislocations, an extra 
vector has to be introduced, which is called the Burgers vector 
[40]-[42]. Disclinations are defects that are originating from 
the rotational incompatibility of the crystal lattice, and these 
are equivalent to wedge disclinations. Disclination on a 2D 
graphene can be thought of an explicit breaking of the local 
rotational symmetry which can be measured by the Frank’s 
vector [41]. 

The purpose of this work is twofold: First, we examine the 
electronic properties of the parabolic GQDs in the vicinity of 
the ܭ-point of the Brillouin zone of the gapped graphene by 
using the effective low-energy Dirac equation for the electron 
quasi-particle states in the presence of a single charged 
Coulomb impurity that is subjected to a homogeneous 
magnetic field. The second one includes the physics of 
graphene cones. In this paper, we examined the electronic 
properties of parabolic QDs with topologically defected 
graphene i.e. graphene cone. The energy levels of GQD in the 
presence of defects and subjected to a uniform magnetic field 
perpendicular to GQD plane are studied in this context within 
the framework of the perturbation theory. 

The paper is organized according to the following order: In 
Section II, first, the model is introduced and following the 
introduction the electronic properties of parabolic GQDs is 
described and discussed. In Section III a brief summary and 
conclusion is added. 

II.  THEORY 

Electrons near the ܭ-point of the graphene obey the 
massless relativistic Dirac equation. The effective Hamiltonian 
in the presence of a constant uniform magnetic field and a 
parabolic confinement potential with a single charged 
Coulomb impurity is given by 

 

ܪ ൌ Ԧߪிݒ ∙ ቀ݌Ԧ ൅
௘

௖
Ԧቁܣ	 െ

௓௘మ

ఢ	௥
൅ ிݒ݉	߬

ଶߪ௭ ൅  ଶ .         (1)ݎ∆ߚ
 

ிݒ ,are Dirac matrices ߚ ௜ andߪ ൌ ሺ3ܽ 2⁄ ሻܬ଴ is the Fermi 
velocity and ܬ଴ is the resonance integral between nearest 
neighbor carbon atoms which is of order of 2.7 eV. Here, ܽ is 

Magnetic Field Effects on Parabolic Graphene 
Quantum Dots with Topological Defects  

Defne Akay, Bekir S. Kandemir 

S



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:10, No:1, 2016

55

 

 

the equilibrium bond length of the graphene. ݌Ԧ ൌ െ݅԰׏ሬሬԦൌ
െ݅԰ሺ߲௫, ߲௬ሻ is the two-dimensional momentum operator, ࡭ is 
the vector potential that generates the magnetic field ࡮ ൌ સ ൈ
࡭	,.and it will be chosen in the symmetric gauge, i.e ,࡭ ൌ
Bሺെy, x, 0ሻ/2, and ܼ݁ଶ ߳⁄  is the strength of a charged impurity, 
where ܼ is the atomic number of impurity, ߳ is the dielectric 
constant. The third term in (1), is the mass term and it gives 
rise to an energy gap 2݉ݒிଶ in the spectrum of graphene, where 
߬ ൌ ൅1	ሺ߬ ൌ െ1ሻ corresponds to the ܭ	ሺ	ܭᇱሻ valley. Throughout 
this work, we restrict ourselves to a single valley ሺܭሻ and a 
single band (conduction). The last term in (1) corresponds to 
GQD potential wherein ∆ൌ ܷ଴ 2ܴ଴

ଶ⁄ , ଴ܷ and ܴ଴ are the strength 
and the radius of the graphene quantum dot, respectively. The 
solution of (1) in the absence of parabolic potential is well 
established in [39] in terms of spinor wave function, Ψ஺,஻

ற ൌ

൫Ψ஺஻ା
ற 	Ψ஺஻ି

ற 	൯ where ܣ and ܤ are the pseudospin indices and 
refer to sublattices of graphene, while ൅ and െ signs denote 
the valleys. 

In order to get conical topology or topological defects in 
graphene, one needs to introduce nontrivial holonomies in the 
pseudoparticle wave function. In the presence of a graphene 
cone with an angle of deficit 2	݊ஐπ/6 , the angular boundary 
condition on spinor wave function Ψ is given by 

 

Ψሺݎ, ߠ ൌ ሻߨ2 ൌ ݁௜௘ଶగ௥ቀଵି
೙ಈ
ల
ቁΨሺݎ,  ሻ                   (2)ߠ

 
where	݊ஐ is defect number of topological defects. These 
holonomies on spinor wave function can be represented by a 
fictitious gauge field here	݊ஐ is defect number of topological 
defects, and these holonomies on spinor wave function can be 
formed with fictitious gauge field 

 

ሻݎఏሺܣ ൌ
ଵ

௘௥
ቂേ

	௡ಈ/ସ
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ଵ

ଶ
 ଷቃ                       (3)ߪ

 
By inserting this fictitious gauge field into (1), the effective 

Hamiltonian for the low-energy excitations of a graphene cone 
in the presence of both parabolic QD and a single charged 
Coulomb impurity subjected to a homogeneous magnetic field 
can be written as a sum of three Hamiltonians, ܪഥ ൌ ଴ܪ ൅ ᇱܪ ൅
 :ிݒᇱᇱ in units of ԰ܪ
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                 (4) 

 
together with 
 

ᇱܪ ൅ ᇱᇱܪ ൌ ቆ
∆଴ݎଶ 2ܽଶ/ݎതܤ

െܤത2ܽ/ݎଶ െ∆଴ݎଶ
ቇ.                   (5) 

 
In (5), ܤത ൌ ଴ܤ ,is the dimensionless magnetic field	଴ܤ/ܤ ൌ
԰ܿ/݁ܽଶ, and ܼ̅ ൌ ܼ݁ଶ/߳԰ݒி is the dimensionless coupling 

constant. Here, we have also used the abbreviations ݉଴ ൌ
ி/԰ and ∆଴ൌݒ݉ ∆/԰ݒி. ܪ଴ is the exactly solvable and its 
corresponding energy eigenvalues are found to be  
 

௡̅ߝ ൌ ݉଴ ൤1 ൅ ܼ̅ଶ/ ቀ݊ ൅ ඥߥଶ െ ܼ̅ଶቁ
ଶ
൨
ିଵ/ଶ

           (6) 

 
together with the corresponding eigenfunctions in terms of 
Laguerre polynomials 
 

ሻݎ௡,௝ሺߖ  ൌ ቆ
ሻ݁௜ఏሺ௝ିଵሻݎ௡௝ሺܨ

ሻ݁௜ఏሺ௝ሻݎ௡௝ሺܩ݅
ቇ                           (7)  

 
where 

F୬୨ሺrሻ

G୬୨ሺrሻ
ቋ ൌ

ሺെ1ሻ௡ ௡ܰ,௝ሺ݉଴, ܼ̅ሻඥ݉଴ േ ݁ିఒ௥		଴ߝ

ൈ ሺ2ݎߣሻఊିଵ/ଶൣܮ௡
ଶఊሺ2ݎߣሻ േ ௡ିଵܮଶଵܥ

ଶఊ ሺ2ݎߣሻ൧
 

 
with a normalization constant 
 

௡ܰ,௝ሺ݉଴, ܼ̅ሻ ൌ ቐ
Γሺ݊ ൅ 1ሻߣଷ ቂ݆ ൅ ඥܼ̅ଶ ൅ ሺ݊ ൅ ሻଶቃߛ

Γሺ݊ ൅ ߛ2 ൅ 1ሻ	݉଴
ଶܼ̅

ቑ
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and here ܥଶଵ ൌ െሺ݊ ൅ ሻ/ሺ݆ߛ2 ൅ ݉଴ܼ̅/ߣሻ, where ߣ ൌ ݉଴ܼ̅/

ඥܼ̅ଶ ൅ ሺ݊ ൅ ߛ ,ሻଶߛ ൌ ඥߥଶ െ ܼ̅ଶ with ߥ ൌ ሺ݆ േ ݊ஐ/4ሻ/ሺ1 െ ݊ஐ/6ሻ 
which depends on ݆ as well as the number of sectors ݊ஐ 
removed from the gapped graphene to from conical 
topological defects. ݆ ൌ ௝݉ ൅ 1/2 is the eigenvalue of the 
conserved total angular momentum ܬ௭. The quantum number ݊ 
takes values ݊ ൌ 0,1,2, … if ௝݉ ൒ 0, and ݊ ൌ 1,2,… if ௝݉ ൏ 0. It 
can be easily checked that the lowest angular momentum 
channel is ݆ ൌ േ1/2, the critical coupling constant ܼ̅௖ takes the 
well-known value, i.e., 0.5 for the case ݊ ൌ 0, and it increases 
by increasing the angle of the cone, except for the case of 
݊ஐ ൌ 2. In our calculations, we have excluded the ݊ஐ ൌ 2 
case, because it is required that supercritical regime. In the 
framework of perturbation theory, by using corresponding 
eigenfunctions and obtained the first-order shift in energy 
eigenvalues of (1) as ܧത ൌ ௡̅ߝ ൅ ௡̅ߝ∆

ᇱ ൅ ௡̅ߝ∆
ᇱᇱ, where 
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      (8) 

 
is the Zeeman term due to magnetic field and this result is 
valid for ܤ	ഥ ≪ ܼ̅ଶ ഥ݉଴

ଶ 2⁄  and  
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	௡ܼ̅̅ߝ	 ഥ݉଴ ඥ ഥ݉଴
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ଶ⁄ ሾ2ሺ݊ ൅ ሻଶߛ ൅ 	݊ሺ݊ ൅ ሻߛ2 ൅ 1ሿ ൅ ௡̅ሺ݊ߝ3 ൅
 ሿ             (9)ߥሻߛ

 
is the contribution due to parabolic quantum dot potential. 
Thus, the energy eigenvalues can be written as, 
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