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 
Abstract—The statistical study has become indispensable for 

various fields of knowledge. Not any different, in Geotechnics the 
study of probabilistic and statistical methods has gained power 
considering its use in characterizing the uncertainties inherent in soil 
properties. One of the situations where engineers are constantly faced 
is the definition of a probability distribution that represents 
significantly the sampled data. To be able to discard bad 
distributions, goodness-of-fit tests are necessary. In this paper, three 
non-parametric goodness-of-fit tests are applied to a data set 
computationally generated to test the goodness-of-fit of them to a 
series of known distributions. It is shown that the use of normal 
distribution does not always provide satisfactory results regarding 
physical and behavioral representation of the modeled parameters. 
 

Keywords—Kolmogorov-Smirnov, Anderson-Darling, Cramer-
Von-Mises, Nonparametric adherence tests.  

I. INTRODUCTION 

S in most branches of science, the use of probabilistic 
and statistical methods has become extremely important 

in the development of modern Geotechnics. In particular, the 
concept of reliability of a venture has attracted considerable 
attention in recent years, boosting therefore the study of 
statistics for engineers. 

It is known that one of the key points of the correct 
modeling of geotechnical data is the choice of a probability 
distribution representing the behavior of the data analysis. In 
general, the normal distribution has been the default choice of 
the vast majority of engineers. This can be explained by the 
wide applicability of this distribution; however, there are cases 
where the use of such random variable does not preserve the 
meaning and the physical behavior of the variables under 
consideration. Then arises the question on which distribution 
best fits a given sample of the target population. To provide 
answers to this question, adherence tests are used.  

II.  ADHERENCE TESTS 

Adherence tests are statistical tests used to measure how 
well a given probability distribution is able to model the data 
set being analyzed. Adherence tests are also commonly called 
goodness of fit tests [1]. In general this type of testing is based 
on a hypothesis test, in which the null hypothesis, H0, is that 
data considered follow a given distribution test, while the 
alternative hypothesis, H1, considers that the data do not 
follow that distribution. There are two large groups of 
adherence tests with respect to prior knowledge of the 
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parameters and distribution of data, namely parametric and 
non-parametric adherence tests. 

A. Parametric Adherence Tests 

Parametric adherence tests are those in which the 
distribution of the studied population is known or selected in 
some way and not into question, so that the hypotheses to be 
tested only involve population parameters. For example, in the 
case of an ANOVA, the rigid assumptions for the variables 
under comparison (normal variables, for example) incur in this 
type of testing not providing answers on how well other 
distributions fit to the data.  

B. Nonparametric Adherence Tests 

Nonparametric adherence tests, on the other hand, are valid 
tests for a broad range of distributions, so that their application 
provides an evaluation of the hypothesis of a given random 
variable being distributed in a distribution different from 
Normal. Still, this type of adherence test provides the means to 
as-certain the distribution that best fits the data analysis. 

In this article, it will be explored the use of three known 
adherence tests in the evaluation of the probability distribution 
that best fits a set of data generated computationally. The three 
tests to be explored are: Kolmogorov-Smirnov test; Anderson-
Darling test and test Cramer-Von-Mises.  

III. CONSIDERED ADHERENCE TESTS 

The three adherence tests considered belong to the class of 
tests that uses the empirical distribution function (EDF) in the 
calculation of their statistics. Thus, it is necessary to first 
define this concept.  

A. Empirical Distribution Function 

Consider the ordered data set {x1, x2, x3, ..., xN}, whose 
empirical cumulative distribution function, Fn(X), one wants 
to calculate. Mathematically, the EDF may be given by: 
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where x  indicates the ceiling mathematical function that 
provides the greatest integer less than x and sign (x) is the sign 
function, in which the result is +1 if x is positive and -1 
otherwise. In other words, the EDF a variable x is ranges from 
0 to 1 and is increased by 1 / N when X passes each value in 
the ordered set of data. The EDF being de-fined, the adherence 
tests of interest can be studied. 

B. Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov belongs to the highest class of 
EDF based statistics, given the fact that it works with the 
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biggest difference between the empirical distribution Fn(x) 
and the hypothetical F(x). 

The hypothetical cumulative distribution comes from the 
test distribution, over which the null hypothesis of the 
hypothesis test resides. Thus, in the case of the Kolmogorov-
Smirnov test, the null hypothesis is that the data are distributed 
according F (x) and the alternative hypothesis is that the data 
do not follow such distribution 

Mathematically, the KS statistics of the Kolmogorov-
Smirnov test may be defined as: 
 

sup ( ) ( )n
x

KS F x F x
 

            (2) 

 
In order to be able to accept or reject the null hypothesis, 

the value of KS and its distribution should be assessed. Note 
that, intuitively, if the distribution pattern approximates the 
empirical distribution, the value of KS should be small. On the 
other hand, when KS is big, it is an indicative that the test does 
not characterize the distribution and the variable of interest. 
Put in another way, H0 can be rejected if the statistic value KS 
is greater than or equal to a given limit value, KSmax, the last 
of which depend on the confidence level adopted, α. Another 
important concept that arises from this evaluation process is 
called the p-value, which gives the probability of obtaining a 
statistic at least as extreme as the one calculated, assuming 
that the null hypothesis is true. Thus, one can accept H0 if the 
p-value associated is greater than the significance level. 

In the present paper, the software Mathematica will be used 
to evaluate the statistics and p-values of the three tests 
considered. 

C. Cramer-Von-Mises Test 

Unlike the Kolmogorov-Smirnov test, Cramer-Von Mises 
test is a quadratic test of the empirical distribution function. 
This designation stems from the fact that this test works with 
the squared differences between the empirical and the 
hypothetical distributions [2]. This test has been applied to 
study a wide variety of problems in science. In [3], a Cramer–
von Mises type test based on local time of switching diffusion 
process has been studied. On the other hand, in [4] a 
comparison between the Cramer-von Mises test and adaptive 
tests has been performed. In the present paper, on the other 
hand, we restrict our attention to the traditional test. 

Mathematically, the CM statistics of the Cramèr-Von-Mises 
test may be defined as: 
 

 2
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By knowing the data and the target distribution, the use of 

(3) becomes ready. 
As in the case of the Kolmogorov-Smirnov test, the 

Cramer-Von-Mises test provides results which confirm 
whether or not H0, according to the statistical distribution of 
the CM or according to the p-value. 

D. Anderson-Darling Test 

As the Cramer-Von-Mises test, Anderson-Darling test is a 
quadratic test of the empirical distribution function. 
Furthermore, unlike what happens in (3), a weight is given to 
each observation inside the integral [5]. This test has been 
modified and applied to several distributions, such as power-
law types [6] and extreme-value distributions [7]. On the other 
hand, as the case of the CM test, we restrict our analysis to the 
classical Anderson-Darling test. 

Mathematically, the AD statistics of the Anderson-Darling 
test may be defined as: 
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Interestingly, the main difference between Ander-son-

Darling and Cramèr-Von-Mises tests is that the first gives 
greater weight to the data coming from the tails of the 
distributions. Similarly, to the other tests already mentioned, 
the hypothesis H0 should be rejected by comparison with 
extreme values. 

Being defined the adherence tests to be used; the next step 
is to characterize a process of generating random data through 
the software Mathematica and subsequent application of the 
adherence tests. 

IV. RANDOMIZES SAMPLES GENERATION AND ADHERENCE 

TESTS APPLICATION 

In the present paper, three randomized samples of 104 
elements will be considered. In order to evaluate the 
applicability of the adherence tests, each one of the 
randomized samples will display a tendency that can be found 
in the practice of geotechnical engineering. The considered 
tendencies are: variables distributed according to a normal 
distribution; variables with asymmetric distribution and 
symmetric variable with long tail. 

A. Normal Sample (D1) 

According to a normal distribution, the Random Variate 
function of the software Mathematica was used for the 
generation of the distributed sample. The histogram of the 
respective generated data can be found in Fig. 1 

The histogram is shown in Fig. 1 was generated from a 
normal distribution with a mean of 2 and standard deviation of 
3. 

Mathematically, one can define the probability density 
function of a normal variable with mean μ and standard 
deviation σ by means of the following equation: 
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E. Distributions to Be Tested 

As previously argued, to use the adherence tests the test 
distributions must be determined. For simplicity, the classes of 
test distributions will be the same used for the generation of 
data that is the Normal, Levy and Student’s t distributions. 

Each of the data will be tested against three distributions 
whose parameters were previously determined through the 
maximum likelihood estimation provided in Mathematica 
software. The parameters for each distribution to be tested are 
shown in Table II. 

 
TABLE II 

PARAMETERS AND DISTRIBUTIONS TO BE TESTED 

Data 
Normal  
(μ, σ) 

Levy  
(μ, σ) 

T-student  
(μ, σ, ν) 

D1 (2, 3) (-9.9, 10.8) (2, 3, 412) 

D2 (6037, 2.3 105) (4, 2) (1011, 1011, 27368) 

D3 (1, 4.2) (-29, 29) (1, 3, 4) 

F. Adherence Tests 

By applying the adherence tests discussed in this article on 
the generated data and using as test distributions those 
presented in Table II, Tables III-V can be generated. 

 
TABLE III 

GOODNESS-OF-FIT TESTS RESULTS (P-VALUES) FOR THE D1 DATA 

CONSIDERING THE TEST DISTRIBUTIONS SHOWN IN TABLE II 

Distribution  
Kolmogorov- 

Smirnov 
Cramèr-Von-Mises Anderson-Darling 

Normal 0.92 0.91 0.93 

Levy 0 0 0 

T-student 0.94 0.92 0.95 

 
It is worth noting that in cases where the D1 data set is 

considered, adherence tests clearly show that only the Normal 
and Student’s t distributions can represent the sample. It is 
further noted that the fact that both distributions mentioned fit 
well to the data follows from the consideration that the 
Normal distribution is the limiting case of t distribution when 
it has a large number of degrees of freedom. Thus, it can be 
noted that adherence tests used are accurate on the 
characterization of the distribution process from which the D1 
data set belongs.  

 
TABLE IV 

GOODNESS-OF-FIT TESTS RESULTS (P-VALUES) FOR THE D2 DATA 

CONSIDERING THE TEST DISTRIBUTIONS SHOWN IN TABLE II 

Distribution 
Kolmogorov-

Smirnov 
Cramèr-Von-Mises Anderson-Darling

Normal 0 0 0 

Levy 0.22 0.23 0.30 

T-student 0 0 0 

 
By looking at Table IV, it is easy to perceive that all tests 

suggest the Levy distribution as the best distribution of the 
data. In fact, the p-value is 0 for the other distributions, 
implying the rejection of H0 for cases of Normal and 
Student’s t distributions. Therefore, all the tests are effective 
in characterizing the D2 set of data. 
 

 
 

TABLE V 
GOODNESS-OF-FIT TESTS RESULTS (P-VALUES) FOR THE D2 DATA 

CONSIDERING THE TEST DISTRIBUTIONS SHOWN IN TABLE II 

Distribution 
Kolmogorov- 

Smirnov 
Cramèr-Von-Mises Anderson-Darling 

Normal 0 0 0 

Levy 0 0 0 

T-student 0.52 0.54 0.64 

 
It is easy to notice from the Table V that the adherence tests 

indicate that the D3 data are distributed according to a 
Student’s t distribution. This fact shows, once again, that the 
considered goodness-of-fit tests are effective as regards the 
determination of the probability distribution of a data set. 

V. CONCLUSIONS 

The role of Statistics in exact sciences has been more 
considered with passing of time. Especially in the geotechnical 
engineering field, the inherent variability of soil parameters 
finds a great ally in this area of the knowledge. 

One of the most common situations when an engineer is 
analyzing a set of data is the proper choice of probability 
distribution that represents it. This choice taken must be as 
reliable as it can possibly be, so that the physical behavior of 
the modeled variable is not lost. 

The adherence tests come as powerful allies to help 
determine which distribution is better adjusted to the database. 
Therefore, it is imperative that there is complete knowledge of 
them for a successful statistic modeling process. 

One of the aims of this paper was a discussion about some 
the features of three of the most known non-parametric 
adherence testes, such as: Kolmogorov-Smirnov test, Cramèr-
Von-Mises test and Anderson-Darling test. 

From computational experiments, it was shown how these 
tests can be used to determine the probability distribution that 
adapts better to the data in analysis. This way, it is believed 
that a contribution to the diffusion of traditional statistics tools 
in the field of geotechnical engineering has been done. 
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